```
צ POLITECNICO DI MILANO
```


Association Rules

Information Retrieval and Data Mining

Learning Unsupervised Rules !?!

Bread
Peanuts
Milk
Fruit
Jam

Jam
Soda
Chips
Milk
Bread

Bread
Jam
Soda
Chips
Milk
Fruit

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- Motivation: Finding inherent regularities in data
- What products were often purchased together? Beer and diapers?!
- What are the subsequent purchases after a PC?
- What kinds of DNA are sensitive to this new drug?
- Can we automatically classify web documents?
- Applications
- Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, DNA sequence analysis, etc.

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

Examples
\{bread $\} \Rightarrow$ \{milk $\}$ \{soda\} \Rightarrow \{chips $\}$
\{bread $\} \Rightarrow$ \{jam $\}$

- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Frequent Itemset

- Itemset
- A collection of one or more items, e.g., \{milk, bread, jam\}
■ k-itemset, an itemset that contains k items
- Support count (σ)
- Frequency of occurrence of an itemset
- $\sigma(\{$ Milk, Bread $\})=3$ $\sigma(\{$ Soda, Chips $\})=4$
- Support
- Fraction of transactions that contain an itemset
- $s(\{$ Milk, Bread $\})=3 / 8$
$\mathrm{s}(\{$ Soda, Chips $\})=4 / 8$

TID	ltems
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

- Frequent Itemset
- An itemset whose support is greater than or equal to a minsup threshold
- Implication of the form $X \Rightarrow Y$, where X and Y are itemsets
- Example: $\{$ bread $\} \Rightarrow$ \{milk $\}$
- Rule Evaluation Metrics, Suppor \& Confidence
- Support (s)
- Fraction of transactions that contain both X and Y

$$
s=\frac{\sigma(\{\text { Bread, Milk }\})}{\# \text { of transactions }}=0.38
$$

- Confidence (c)
- Measures how often items in Y appear in transactions that contain X

$$
c=\frac{\sigma(\{\text { Bread }, \mathrm{Milk}\})}{\sigma(\{\text { Bread }\})}=0.75
$$

Support and Confidence Meaning

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

$$
\text { Support }(\mathrm{s})=P(X, Y)
$$

$$
\begin{aligned}
\text { Confidence }(c) & =P(X, Y) / P(X) \\
& =P(Y \mid X)
\end{aligned}
$$

- Given a set of transactions T, the goal of association rule mining is to find all rules having
- support \geq minsup threshold
- confidence \geq minconf threshold
- Brute-force approach
- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
- Brute-force approach is computationally prohibitive!
\{Bread, Jam $\} \Rightarrow$ \{Milk\}: s=3/8 c=3/4 \{Bread, Milk\} \Rightarrow \{Jam\}: $s=3 / 8 \mathrm{c}=3 / 3$ \{Milk, Jam $\} \Rightarrow$ \{Bread\}: s=3/8 c=3/3 $\{$ Bread $\} \Rightarrow\{$ Milk, Jam\}: $\mathrm{s}=3 / 8 \mathrm{c}=3 / 4$ $\{$ Jam $\} \Rightarrow\{$ Bread, Milk $\}: s=3 / 8 \mathrm{c}=3 / 5$
$\{$ Milk $\} \Rightarrow\{$ Bread, Jam $\}: \mathrm{s}=3 / 8 \mathrm{c}=3 / 6$

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

- All bove rules are binary partitions of the same itemset: \{Milk, Bread, Jam\}
- Rules originating from the same itemset have identical support but can have different confidence
- Decouple the support and confidence requirements!

1. Frequent Itemset Generation

- Generate all itemsets whose support \geq minsup

2. Rule Generation

- Generate high confidence rules from frequent itemset
- Each rule is a binary partitioning of a frequent itemset

However frequent itemset generation is computationally expensive!

- Brute-force approach:
- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since $M=2^{d}$

Computational Complexity

- Given d unique items:
- Number of itemsets: $2^{\text {d }}$

■ Number of possible association rules: $\sum_{k=1}^{d-1}\left[\binom{d}{k} \times \sum_{j=1}^{d-k}\binom{d-k}{j}\right]$

$$
=3^{d}-2^{d+1}+1
$$

- For d=6, there are 602 rules

- Reduce the number of candidates (M)
- Complete search: $\mathrm{M}=2^{\text {d }}$
- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
- Reduce size of N as the size of itemset increases
- Reduce the number of comparisons (NM)
- Use efficient data structures to store the candidates or transactions
- No need to match every candidate against every transaction
- Apriori principle
- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$
\forall X, Y:(X \subseteq Y) \Rightarrow s(X) \geq s(Y)
$$

- Support of an itemset never exceeds the support of its subsets, this is known as the anti-monotone property of support

Illustrating Apriori Principle

Found to be Infrequent

The Apriori Algorithm Idea

- Let $\mathrm{k}=1$
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
- Generate length $(k+1)$ candidate itemsets from length k frequent itemsets
- Prune candidate itemsets containing subsets of length k that are infrequent
- Count each candidate support by scanning the DB
- Eliminate candidates that are infrequent, leaving only those that are frequent

Important Details on Apriori Algorithm

- How to generate candidates?
- Step 1: self-joining L_{k}
- Step 2: pruning
- Example of Candidate-generation
- $L_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
- Self-joining: $L_{3}{ }^{*} L_{3}$
- abcd from abc and abd
- acde from acd and ace
- Pruning:
- acde is removed because ade is not in L_{3}
- $C_{4}=\{a b c d\}$
C_{k} : Candidate itemset of size k
L_{k} : frequent itemset of size k
$L_{1}=\{$ frequent items $\} ;$
for ($k=1 ; L_{k}!=\varnothing ; k++$) do begin
$C_{k+1}=$ candidates generated from L_{k};
for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t
$L_{k+1}=$ candidates in C_{k+1} with min_support
end
return $\cup_{k} L_{k}$;

An Example of Frequent Itemset

Strategies to Improve Apriori Efficiency

- Hash-based itemset counting:
- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- Transaction reduction:
- A transaction that does not contain any frequent k itemset is useless in subsequent scans
- Partitioning:
- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
- Sampling:
- mining on a subset of given data, lower support threshold + a method to determine the completeness
- Dynamic itemset counting:
- add new candidate itemsets only when all of their subsets are estimated to be frequent
- Given a frequent itemset L, find all non-empty subsets $f \subset$ L such that $f \rightarrow L-f$ satisfies the minimum confidence requirement
- If $\{A, B, C, D\}$ is a frequent itemset, candidate rules are:
$\mathrm{ABC} \rightarrow \mathrm{D}, \mathrm{ABD} \rightarrow \mathrm{C}, \mathrm{ACD} \rightarrow \mathrm{B}, \mathrm{BCD} \rightarrow \mathrm{A}, \mathrm{A} \rightarrow \mathrm{BCD}$, $B \rightarrow A C D, C \rightarrow A B D, D \rightarrow A B C, A B \rightarrow C D, A C \rightarrow B D$, $A D \rightarrow B C, B C \rightarrow A D, B D \rightarrow A C, C D \rightarrow A B$
- If $|L|=k$, then there are $2^{k}-2$ candidate association rules (ignoring $L \rightarrow \varnothing$ and $\varnothing \rightarrow L$)

How to efficiently generate rules from

frequent itemsets?

- Confidence does not have an anti-monotone property $c(A B C \rightarrow D)$ can be larger or smaller than $c(A B \rightarrow D)$
- But confidence of rules generated from the same itemset has an anti-monotone property

$$
L=\{A, B, C, D\}: c(A B C \rightarrow D) \geq c(A B \rightarrow C D) \geq c(A \rightarrow B C D)
$$

- Confidence is anti-monotone with respect to the number of items on the right hand side of the rule

Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

- join(CD=>AB,BD=>AC) would produce the candidate rule $D=>A B C$
- Prune rule $D=>A B C$ if its subset $A D=>B C$ does not have high confidence

Example with Weka: Formatting the data

```
%
% Example of market basket data
%
@relation 'basket'
@attribute Bread {1}
@attribute Peanuts {1}
@attribute Milk {1}
@attribute Fruit {1}
@attribute Jam {1}
@attribute Soda {1}
@attribute Chips {1}
@attribute Steak {1}
@attribute Cheese {1}
@attribute Yogurt {1}
```

- Many real data sets have skewed support distribution

- If minsup is set too low, apriori becomes computationally expensive and the number of itemsets very large
- A single minimum support threshold may not be effective

Anything that is interesting happens significantly more than you would expect by chance.

Example: basic statistical analysis of basket data may show that 10% of baskets contain bread, and 4% of baskets contain washing-up powder.

What is the probability of a basket containing both bread and washing-up powder? The laws of probability say:

- if you choose a basket at random:
- There is a probability 0.1 that it contains bread.
- There is a probability 0.04 that it contains washing-up powder.
- If these two are independent:
- There is a probability $0.1^{*} 0.04=0.004$ it contains both

Anything that is interesting happens significantly more than you would expect by chance.

Example: basic statistical analysis of basket data may show that 10% of baskets contain bread, and 4% of baskets contain washing-up powder.

We have a prior expectation that just 4 baskets in 1000 should contain both bread and washing up powder:

- If we discover that really it is 20 in 1000 baskets, then we will be very surprised.
- Something is going on in shoppers' minds: bread and washing-up powder are connected in some way.
- There may be ways to exploit this discovery ...

Another Example

| ID | apples | beer | cheese dates | eggs | fish | glue | | honey cream | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | | 1 | | | 1 | 1 | |
| 2 | | | 1 | 1 | 1 | | | | |
| 3 | | 1 | 1 | | | 1 | | | |
| 4 | | 1 | | | | 1 | | | 1 |
| 5 | | | | | 1 | | 1 | | |
| 6 | | | | | | 1 | | | 1 |
| 7 | 1 | | | 1 | | | | 1 | |
| 8 | | | | | | 1 | | | 1 |
| 9 | | | 1 | | 1 | | | | |
| 10 | | 1 | | | | | 1 | | |
| 11 | | | | | 1 | | 1 | | |
| 12 | 1 | | | | | | | | |
| 13 | | | 1 | | | 1 | | | |
| 14 | | | 1 | | | 1 | | | |
| 15 | | | | | | | | 1 | 1 |
| 16 | | | | 1 | | | | | |
| 17 | 1 | | | | | 1 | | | |
| 18 | 1 | 1 | 1 | 1 | | | | 1 | |
| 19 | 1 | 1 | | 1 | | | 1 | 1 | |
| 20 | | | | | 1 | | | | |

[^0]
[^0]: Matteo Matteucci - Information Retrieval \& Data Mining

