
A Octave/Matlab Tutorial for Linear Methods
for Classification

Matteo Matteucci

Pattern Analysis and Machine Intelligence, 2012
Politecnico di Milano

Document revision 1.0, June 12, 2012

1 Introduction

This tutorial will guide you though the implementation of some of the linear
methods for classification presented in Ch.4 of [1]. The code has been tested
with Octave 3.4.0, available at 1, and it is going to be tested in Matlab as
well. Feel free to email me for problems or comments about the code. See the
documetation about octave at 2. The South African Heart Disease dataset used
in this tutorial is the same used in the book, and it can be downloaded from 3.
The file you download from the course website has bee edited to convert the
famhist attribute coding from Absent/Present into 0/1; keep this in mind if
you downloaded the original file.

2 Import the dataset

The first line of file SAheart.data contains the name of the covariates and of
the output variable. Starting from the second row, the first column contains the
number of observations (instances), from column 2 to 10, there are the covariates,
and the last column contains the indicator for the class (i.e., presence of a Cardiac
Heart Disease).

If you downloaded the dataset from the course website, to load it into Octave
it should be enough to execute

data = dlmread(’SAheart.data’,’,’,1,0)

X = data(:,1:9)

Y = data(:,10)

where we split the data matrinx into input features X and target class Y.
In the dataset there is no distinction between trainig set and test set, but we

know tha t a proper evaluation requires the use of two independent datasets. To
generate them we use a Stratified Sampling Procedure; this is a difficult name for
a rather simple procedure to guarantee that the percentage of records per class
is respected in both training and testing datasets.

1 http://www.gnu.org/software/octave/
2 http://www.gnu.org/software/octave/doc/interpreter/
3 http://www-stat.stanford.edu/ tibs/ElemStatLearn/



function [training, testing] = StratifiedSampling(Y,test_ratio)

% split the records in positive and negative examples

rows = 1:length(Y);

pos_idx = rows(Y==0);

neg_idx = rows(Y==1);

% identify the number of records corrsponding to test_ratio

pos_n = floor(length(pos_idx)*test_ratio);

neg_n = floor(length(neg_idx)*test_ratio);

% generate a random permutation for the two sets of indexes

pos_rand = randperm(length(pos_idx))’;

neg_rand = randperm(length(neg_idx))’;

% extract the given percenttage of positive and negative records

testing = [pos_idx(pos_rand(1:pos_n)) ...

neg_idx(neg_rand(1:neg_n))];

training = [pos_idx(pos_rand(pos_n+1:end)) ...

neg_idx(neg_rand(neg_n+1:end))];

% just an ahestetic sorting

sort(testing);

sort(training);

IN THE FOLLOWING TUTORIAL WE ASSUME TO HAVE
A 30% OF TESTING DATA, BUT THESE ARE RANDOM,
SO WE EXPECT OUR RESULT TO BE “SIMILAR” TO THE
BOOK AND NOT EXACTLY EQUAL (THE SAME WILL BE
FOR YOUR HOMEWORK RESULTS)

3 Linear regression on the indicator matrix

Following the simple formulas in [Ch.4.2] of [1] we are going to implement the
simplest linear classification algorithm. Since the classes are 0/1 building the Y

indicator matrix can be done quite easily.

function beta = linearRegression_train(X,Y)

%extend the input vector

X = [ones(size(X, 1), 1) X];

%build the indicator matrix (ad-hoc for 2 classes)

Y = [Y not(Y)];

%computation of coefficients for the 2 models



beta = inv(X’*X)*X’*Y;

end

Exercise: Whats the meaning of the vector of ones we add to the
input features? (Don’t worry this is just a warm up question!)

Reading from the Octave Manual, for better numerical stability with sparse
matrixes and badly conditioned regression problems you should use Y = A\B,
rather than Y = inv(A) ∗B

function beta = linearRegression_train(X,Y)

%extend the input vector

X = [ones(size(X, 1), 1) X];

%build the indicator matrix (ad-hoc for 2 classes)

Y = [Y not(Y)];

%computation of coefficients for the 2 models

beta = (X’*X)\X’ * Y;

end

With the beta vector estimated from the data it is possible to classify new
instances applying linear regression to them as in the following function.

function Y = linearRegression_test(X,beta)

%extend the input vector

X = [ones(size(X, 1), 1) X];

%evaluate the output of the two models

Y_hat = X*beta;

%select the one with the highest response

Y = (Y_hat(:,1)>Y_hat(:,2));

end

You can check the result by training on the training set and testing on the testing
set

beta = linearRegression_train(X(training,:),Y(training))

Y_predicted = linearRegression_test(X(testing,:),beta)

Exercise: What are the training and testing error (percentage of
wrong class predictions) in this case? Does this result surprise
you? Why?



4 Linear discriminant analysis

Now move to the implementation of Linear Discriminant Analysis with and
without Fisher projection. Let start from the simple one; in this case we need to
split the dataset according to the class and compute means and priors for each
of them. The common covariance comes from the pooling of the two variances.

function [mu_0, mu_1, sigma, pi_0, pi_1] = ...

linearDiscriminantAnalysis_train(X, Y)

% indexes of samples for the two classes

first_class = find(Y == 1);

second_class = find(Y == 0);

% number of samples

N = size(X, 1);

% a priori probabilities of the 2 classes

pi_1 = size(X(first_class, :), 1) / N;

pi_0 = size(X(second_class, :), 1) / N;

% centroids of the 2 classes

mu_1 = mean(X(first_class, :), 1);

mu_0 = mean(X(second_class, :), 1);

% common pooled covariance matrix

% (it turn out we can summ the covariances)

sigma = zeros(size(X, 2));

for i=1:size(first_class, 1)

Xi = X(first_class(i), :);

sigma = sigma + (Xi - mu_1)’ * (Xi - mu_1);

end

for i=1:size(second_class, 1)

Xi = X(second_class(i), :);

sigma = sigma + (Xi - mu_0)’ * (Xi - mu_0);

end

sigma = sigma / N;

With the mu 0, mu 1, sigma, pi 0, pi 1 parameters estimated from the
data it is possible to classify new instances applying linear discriminant analysis
to them as in the following function.

function Y = linearDiscriminantAnalysis_test(X, mu_0, mu_1, ...

sigma, pi_0, pi_1)

sigmaInv = inv(sigma);

% comparing the discriminants is a simplification of



% comparing the posterior probabilities

discriminant_1 = X*sigmaInv*mu_1’ - ...

0.5*mu_1*sigmaInv*mu_1’ + log(pi_1);

discriminant_0 = X*sigmaInv*mu_0’ - ...

0.5*mu_0*sigmaInv*mu_0’ + log(pi_0);

Y = (discriminant_1>discriminant_0);

end

Exercise: What are the training and testing error (percentage of
wrong class predictions) in this case? Does this result surprise
you? Why?

Lets now introduce the Fisher projection in the linear discriminant analysis;
the code notation follow the notation from [Ch.4.3.3] of [1] so you should be able
to follow it with the textbook on your side (do that!)

function a = FisherProjection(X, Y)

% we assume to know that we have 2 classes

first_class = find(Y == 1);

second_class = find(Y == 0);

N = size(X, 1);

% centroids of the two classes

mu_1 = mean(X(first_class, :), 1);

mu_0 = mean(X(second_class, :), 1);

M = [mu_1; mu_0];

% common pooled within-class covariance matrix

W = zeros(size(X, 2));

for i=1:size(first_class, 1)

Xi = X(first_class(i), :);

W = W + (Xi - mu_1)’ * (Xi - mu_1);

end

for i=1:size(second_class, 1)

Xi = X(second_class(i), :);

W = W + (Xi - mu_0)’ * (Xi - mu_0);

end

W = W / N;

% maximization of a’*B*a / a’*w*a via SVD

[Vw, Dw, Vw] = svd(W);

Whalf = Vw * Dw ^ (1/2) * Vw’; % Whalf’*Whalf == W

% we substitute b = Whalf * a as the independent variable

Wminushalf = inv(Whalf);

Mstar = M*Wminushalf;



for i=1:size(M,1)

Mstar(i,:) = Mstar(i,:)-mean(Mstar);

end

Bstar = Mstar’*Mstar;

[Vstar, Db, Vstar] = svd(Bstar);

% we are interested in the eigen vectors of Bstar

a = Wminushalf * Vstar;

end

Once the Fisher projection has been computed it is possible to use it for
computing the linead discriminat classifier after projecting the data on a reduced
subspace

a = FisherProjection(X,Y)

reducedX = X*a(:,1);

[mu_0, mu_1, sigma, p_0, p_1] = linearDiscriminantAnalysis_train(reducedX, Y)

Exercise: What are the training and testing error (percentage of
wrong class predictions) in this case? Does this result surprise
you? Why?

Exercise: What happens if we decide to use a number of dimen-
sions K = 2 for the Fisher projection? Do the numbers differ?

Exercise: To understand what is happening plot the points in the
transformed space with K=1 (one dimentional plot) and K=2
(two dimensional plot) with a different color for each class. As
for the Figures ... in the book generate the plot with different
principal components.

5 Quadratic discriminant analysis

Here we are going to implement two different methods for non linear discrimi-
nant analysis. The first one is the quadratic version of the linear regression on
the indicator matrix, while the second one implements Quadratic Discriminant
Analysis in the “right” way.

The only tricky part in computing the quadratic variant of the linear regres-
sion on the indicator matrix is the generation of the covariates in the quadratic
space

function extendedX = expandToQuadraticSpace(X)

% adds new columns to extendedX; keeps X for other calculations

extendedX = X;

for i=1:size(X, 2)

for j=1:size(X, 2)

newColumn = X(:, i) .* X(:, j);



extendedX = [extendedX newColumn];

end

end

end

Once this expansion has been obtained it is possible to run directly the linear
regression method we have seen at the beginning of this tutorial:

quadX = expandToQuadraticSpace(X);

%check this out!

size(quadX)

beta = linearRegression_train(quadX, Y);

Exercise: Have you tried this with the numerically stable version
of linear regression?

Anyway the trademarked version of Quadratic Discriminant Analysis is a dif-
ferent one; I am talking about the linear discriminant approach with “unpooled
variance”. Its is not much different from the linear Discriminat case right?

function [mu_0, mu_1, sigma_0, sigma_1, pi_0, pi_1]= ...

quadraticDiscriminantAnalysis_train(X, Y)

% indexes of samples for the two classes

first_class = find(Y == 1);

second_class = find(Y == 0);

% number of samples

N = size(X, 1);

% a priori probabilities of the 2 classes

pi_1 = size(X(first_class, :), 1) / N;

pi_0 = size(X(second_class, :), 1) / N;

% centroids of the 2 classes

mu_1 = mean(X(first_class, :), 1);

mu_0 = mean(X(second_class, :), 1);

% covariance matrices for each class (2 classes)

% the unbiased estimator has N - 1 at the denominator

sigma_1 = zeros(size(X, 2));

for i=1:size(first_class, 1)

Xi = X(first_class(i), :);

sigma_1 = sigma_1 + (Xi - mu_1)’ * (Xi - mu_1);

end

sigma_1 = sigma_1 / (size(first_class, 1));



sigma_0 = zeros(size(X, 2));

for i=1:size(second_class, 1)

Xi = X(second_class(i), :);

sigma_0 = sigma_0 + (Xi - mu_0)’ * (Xi - mu_0);

end

sigma_0 = sigma_0 / (size(second_class, 1));

end

At run time to use this classifier you just need to compare the non linear
discriminants

function Y = quadraticDiscriminantAnalysis_test(X, mu_0, mu_1, ...

sigma_0, sigma_1, pi_0, pi_1)

sigma_1_inv = inv(sigma_1);

sigma_0_inv = inv(sigma_0);

discriminant_1 = zeros(size(X, 1), 1);

discriminant_0 = zeros(size(X, 1), 1);

% for each single sample i, compute discriminants value;

% there is no single expression like for LDA

for i=1:size(X, 1)

x = X(i, :);

discriminant_1(i) = - 0.5*log(det(sigma_1)) - ...

0.5*(x-mu_1)*sigma_1_inv*(x-mu_1)’ + log(pi_1);

end

for i=1:size(X, 1)

x = X(i, :);

discriminant_0(i) = - 0.5*log(det(sigma_0)) - ...

0.5*(x-mu_0)*sigma_0_inv*(x-mu_0)’ + log(pi_0);

end

% producing a single column Y of classifications

% via matrices operations

Y = (discriminant_1 > discriminant_0);

end

Exercise: What are the training and testing error (percentage of
wrong class predictions) in these cases? Does this result surprise
you? Why?

6 Logistic regression

Last but not least we got to Logistic Regression as described in [Ch.4.4] of [1].
Following the book its implementation is quite easy ... in the binary case!

function beta=logisticRegression_train(X, Y, iterations)



% adding columns of 1 to allow for an intercept in the model

X1 = [ones(size(X, 1), 1) X];

% suggest init using zeros

beta=zeros(size(X1,2),1);

for i=1:iterations

P = exp(X1*beta)./(1 + exp(X1*beta));

%loglikelihood should increase at each iteration

loglikelihood = Y’*log(P)+(1-Y)’*(log(1-P))

W = diag(P.*(1-P));

Z = X1*beta + W\(Y-P);

beta = (X1’*W*X1)\(X1’*W) * Z;

end

end

Exercise: Does the log likelihood increase as it should be?

For the testing you need

function Y = logisticRegression_test(X, beta)

% adding columns of 1 to allow for an intercept in the model

X1 = [ones(size(X, 1), 1) X];

% compute probability of class 1 give beta

P = exp(X1*beta)./(1+ exp(X1*beta));

Y = (P>0.5);

end

Exercise: What are the training and testing error (percentage of
wrong class predictions) in these cases? Does this result surprise
you? Why?

7 (Facultative Section) Multiclass Dataset

Have done all this stuff for two classes you might be wondering if this all works
for a number of classes higher than 2. The answer is YES! Interested students,
with plenty of time, might decide to modify the code to have it running for a
generic number of classes coded as 1, 2, 3 ... K and test your work in the Vowel
Dataset used in the book (available for downloaded from 4).

References

1. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA,
2001.

4 http://www-stat.stanford.edu/ tibs/ElemStatLearn/


