
ROS ON MULTIPLE MACHINES
ROBOTICS

ROS DISTRIBUTED

Ros can work as a distributed system on multiple devices connected to the same network

We will use the network calle “robotics”, pwd “robo1”.
Do not setup static ip on the network

You can also create your hotspot and work as a master of a new network

To use ROS on multiple device you need to run the ROS master, command “roscore”, only on
one of the device

For all the other nodes you need to specify the ip of the master

ROS DISTRIBUTED

Virtualbox configuration

COMMON CONFIGURATION

Get your ip: “ifconfig command”-> “inet addr”

Export all the variables to properly configure the master, to set all those variables for every
new terminal add them at the end of your ~/.bashrc

$ gedit ~/.bashrc

MASTER CONFIGURATION
First we set the master IP:

export ROS_MASTER_URI=http://master_ip:11311

your IP

Standard ROS port, you
can also run on different
ports

First we set the
master URI

MASTER CONFIGURATION
Tell ROS master my IP:

export ROS_IP=master_ip your IP

Tell ros my ip

CLIENTS CONFIGURATION
First we set the master IP:

export ROS_MASTER_URI=http://master_ip:11311

master ip

Standard ROS port, you
can also run on different
ports

First we set the
master URI

CLIENTS CONFIGURATION
Tell ROS master my IP:

export ROS_IP=master_ip your IP

Tell ros my ip

ROS DISTRIBUTED

On the master pc use the command “roscore”

To test if everything is working on the clients open a new terminal and call “rostopic list”
without previously running “roscore”. You should be able to see topics on the ROS network.

Now all client are on the same network and can communicate and start node on the
distributed ROS netowrk

TIME SYNCHRONIZATION

Recording high-throughput bags often requires to split the recordings on different ROS
devices, to use the bags all together they need to have coherent timestamp.
We then need to synchronize the clock of all the devices on the ROS network.

The standard procedure to synchronize multiple devices on a local network is tu use an ntp
server on a master device and a chrony client for all the other devices.

In a ROS network the procedure is to install the NTP server on the master and chrony on all
the other nodes.

MASTER CONFIGURATION (/etc/ntp.conf)
driftfile /var/lib/ntp/ntp.drift

statistics loopstats peerstats clockstats

filegen loopstats file loopstats type day enable

filegen peerstats file peerstats type day enable

filegen clockstats file clockstats type day enable

pool 0.ubuntu.pool.ntp.org iburst

pool 1.ubuntu.pool.ntp.org iburst

pool 2.ubuntu.pool.ntp.org iburst

pool 3.ubuntu.pool.ntp.org iburst

server 127.127.1.0

fudge 127.127.1.0 stratum 10

pool ntp.ubuntu.com

restrict -4 default kod notrap nomodify nopeer noquery limited

restrict -6 default kod notrap nomodify nopeer noquery limited

restrict 192.0.0.0 mask 255.0.0.0 nomodify notrap

restrict 127.0.0.1

restrict ::1
restrict source notrap nomodify noquery

CLIENT CONFIGURATION (/etc/chrony/chrony.conf)
server 192.168.0.100 minpoll 2 maxpoll 4

initstepslew 2 192.168.0.100

keyfile /etc/chrony/chrony.keys

commandkey 1

driftfile /var/lib/chrony/chrony.drift

maxupdateskew 5

dumponexit

dumpdir /var/lib/chrony

pidfile /var/run/chronyd.pid

logchange 0.5

rtcfile /etc/chrony.rtc

rtconutc

rtcdevice /dev/rtc

sched_priority 1

local stratum 10

allow 127.0.0.1/8

Master IP

TIME SYNCHRONIZATION

The chrony configuration file can be found in \etc\chrony\chrony.conf
Then stop and restart chrony to make those changes effective:
$ sudo service chony stop
$ sudo service chony start

Then to monitor how synchronization is doing:
$ chronyc tracking

ROSPY
ROBOTICS

ROSPY

Python 2.7

With some changes ROS works also with 3.6

Files saved in the script folder

Start node with same syntax as c++ node but using the name of the executable instead of
the node:
rosrun package_name python_file.py

ROSPY (publisher)
import rospy

from std_msgs.msg import String

if __name__ == '__main__':

 try:

 talker()

 except rospy.ROSInterruptException:

 pass

Standard rospy include and std_msgs include

Main function

Start the tolker

ROSPY (publisher)
def talker():

 pub = rospy.Publisher('chatter', String, queue_size=10)

 rospy.init_node('talker', anonymous=True)

 rate = rospy.Rate(10)

 while not rospy.is_shutdown():

 hello_str = "hello world %s" % rospy.get_time()

 rospy.loginfo(hello_str)

 pub.publish(hello_str)

 rate.sleep()

Create the publisher
Initialize the node

Keep spinning
Set the loop rate

Rospy version of ROS_INFO
Publish the message

ROSPY (subscriber)
import rospy

from std_msgs.msg import String

if __name__ == '__main__':

 listener()

Standard include

Main function

ROSPY (subscriber)
def callback(data):

 rospy.loginfo(rospy.get_caller_id() + "I heard %s", data.data)

def listener():

 rospy.init_node('listener', anonymous=True)

 rospy.Subscriber("chatter", String, callback)

 rospy.spin()

Callback function

Init the node

Create the subscriber

ROSPY (bag operation)
import rosbag

bag = rosbag.Bag('test.bag')

for topic, msg, t in bag.read_messages(topics=['chatter', 'numbers']):

 print msg

bag.close()

import lib to handle bag files
Import the bag file

Cycle through the topic and messages

Filter specific topic

