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Reminder on Course Inspiration

Lectures are inspired by the book “An Introduction to Statistical Learning”

• Same authors of ESL, but ISL is easier! 

• Practical perspective with labs and 

exercises using R language

• Available online as pdf (as ESL)

Slides from the teacher (except for clustering) are taken from these 

books, while practicals have been rewritten from scratch … in python!

www.statlearning.com
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What is Statistical Learning?

𝑌𝑖 = 𝑓 𝑋𝑖 + 𝜀𝑖

Suppose we observe 𝑌𝑖 and 𝑋𝑖 = 𝑋𝑖1, … , 𝑋𝑖𝑝 for 𝑖 = 1, … , 𝑛

• Assume a relationship exists between

Y and at least one of the observed X’s

• Assume we can model this as

• f : unknown function systematic

• εi : zero mean random error

The term Statistical Learning refers to using the data to “learn” f
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Example: Income vs. Education Seniority

Function f might also 

involve multiple 

variables …
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Why do we estimate f ?

Prediction: Produce a good estimate for f to make accurate predictions 

for the response, Y/G, based on a new value of X.

Inference: Investigate the type of relationship between Y/G and the X's to 

control/influence Y/G. 

• Which particular predictors actually affect the response?

• Is the relationship positive or negative?

• Is the relationship a simple linear one or is it more complicated etc.?

ModelX Y/G
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Examples for Prediction & Inference

Direct Mail Prediction

• Predicting how much money an individual will donate based on observations 

from 90,000 people on which we have recorded 400 different characteristics.

• Don’t care too much about each individual characteristic. 

• Just want to know: For a given individual should I send out a mailing?

Medium House Price 

• Which factors have the biggest effect on the response

• How big the effect is

• Want to know: how much impact does a river view have on the house value
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How Do We Estimate f ?
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{ 𝑿𝟏, 𝑌1 , 𝑿𝟐, 𝑌2 , … , 𝑿𝒏, 𝑌𝑛 }

𝑌𝑖 ≈  𝑓(𝑿𝒊)

We have observed a set of training data

Use statistical method/model to estimate f

so that for any (𝑿𝒊, 𝑌𝑖)

Based on the model f, statistical methods/models are usually divided in 

• Parametric Methods/Models

• Non-parametric Methods/Models
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Parametric Methods (Part 1)

Parametric methods make an assumption about the model underlining f

• Reduce the problem of estimating f to estimating a set of parameters

• They involve a two-step model based approach

STEP 1: Make some assumption about the functional form of f, i.e. come 

up with a model (e.g., a linear model)

STEP 2: Use the training data to fit the model, i.e., estimate f through the 

unknown parameters

ippiii XXXf   22110)(X

p 210

We will see more 

flexible/powerful models 

than linear ones …

Ordinary Least Sqares are 

used for this, but alternative 

methods exists too.
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Example: A Linear Regression Estimate

Even if the standard deviation is low we will still get a bad answer if we 

use the wrong model (high bias).

f = b0 +b1 ´Education+b2 ´Seniority
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Non-parametric Methods

Sometimes are referred as “sample-based” or “instance-based” methods, 

they do not make explicit assumptions about the functional form of f, and 

exploit the training data “directly”

Advantages: 

• They accurately fit a wider range of possible shapes of f

• They do not require a “training” phase

Disadvantages: 

• A very large number of observations required to obtain an accurate estimate

• Higher computational cost at “testing” time

• They accurately fit a wider range of possible shapes of f.
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Example: A Thin-Plate Spline Estimate

Non-parametric regression methods are more flexible thus they can 

potentially provide more accurate estimates

Smooth thin-plate spline fit
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Prediction Accuracy vs Model Interpretability

Why not just use a more flexible method if it is more realistic?

Reason 1: A simple method, e.g., linear regression, produces a model 

which is much easier to interpret (the Inference part is better). 

• E.g., in a linear model, βj is the average increase in Y for a one unit increase in 

Xj holding all other variables constant.

Reason 2: Even if interested in prediction, it is often possible to get more 

accurate predictions with a simple, instead of a complicated, model. 
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Example: A Poor Estimate

Non-parametric regression methods can also be too flexible and produce 

poor estimates for f (high variance)

Thin-plate spline fit with zero 
training error
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Flexibility vs Model Interpretability

But more flexible 

means lower errors ?!?
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Reducible vs Irreducible Error

The error our estimate will have has two components

• Reducible error due to the choice of f (model complexity)

• Irreducible error due to the presence of εi in the training set

𝑌𝑖 = 𝑓 𝑋𝑖 + 𝜀𝑖

ModelX Y/G

I will come back to this 

soon … several times!
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Irreducible error … because noise matters!
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This means we’ll have errors due to 

noise even with the right model!!!
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Reducible vs Irreducible Error (Part 2)

The error our estimate will have has two components

• Reducible error due to the choice of f (model complexity)

• Irreducible error due to the presence of εi in the training set

Let assume  𝑓 and 𝑋 fixed for the time being

𝑌𝑖 = 𝑓 𝑋𝑖 + 𝜀𝑖

Can you derive this?
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Reducible vs Irreducible Error (Part 3)
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Quality of Fit

Suppose we have a regression problem

• A common accuracy measure is mean squared error (MSE) 

• Where  𝑦𝑖 is the prediction for the observation in our training data.

Training is designed to make MSE small on training data, but …

• What we really care about is how well the method works on new data.

We call this new data “Test Data”.

• There is no guarantee that the method with the smallest Training MSE

will have the smallest Test MSE
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Training vs. Test Mean Squared Error

The more flexible a method is, the lower its training MSE will be, i.e., it will 

“fit” or explain the training data very well.

• Side Note: More Flexible methods (such as splines) can generate a wider range of 

possible shapes to estimate f as compared to less flexible and more restrictive 

methods (such as linear regression). The less flexible the method, the easier to 

interpret the model. Thus, there is a trade-off between flexibility and model 

interpretability. 

However, the test MSE may in fact be higher for a more flexible method 

than for a simple approach like linear regression 
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Example 1

Black: Truth
Orange: Linear Estimate
Blue:  smoothing spline 

Green:  smoothing spline

RED: Test MES
Grey: Training MSE

Dashed:  Minimum possible 
test MSE (irreducible error)
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Example 2

Black: Truth
Orange: Linear Estimate
Blue:  smoothing spline

Green:  smoothing spline

RED: Test MES
Grey: Training MSE

Dashed:  Minimum possible test MSE 
(irreducible error)
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Example 3

Black: Truth
Orange: Linear Estimate
Blue:  smoothing spline

Green:  smoothing spline

RED: Test MES
Grey: Training MSE

Dashed:  Minimum possible
test MSE (irreducible error)
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Bias/ Variance Tradeoff

Test vs. Training MSE’s illustrates a very important tradeoff that governs 

the choice of statistical learning methods

• Bias refers to the error that is introduced by modeling a real life problem

by a much simpler problem

• E.g., linear regression assumes that there is a linear relationship between Y and X.

In real life, some bias will be present

• The more flexible/complex a method is the less bias it will have

• Variance refers to how much your estimate for f would change by

if you had a different training data set

• Generally, the more flexible a method is the more variance it has.
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New Notation (from ESL)
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Let’s consider Expected Squared Prediction Error (over any possible data)

Let apply an “augmentation trick” to the expectation

• Being f deterministic we have                 ,             ,, and 

• Noise is independence

Bias-Variance in Regression (Part 1)
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Bias-Variance in Regression (Part 2)

From the previous we get something already know

Lets check the second expected value

Because f is deterministic and              : 
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For any given, X=x, the expected test MSE for a new Y will be

I.e., as a method/model gets more complex 

• Bias will decrease 

• Variance will increase 

• Expected Prediction Error may go up or down!

The Trade-off

Expected Prediction Error

Irreducible Error Model  Variance

Model Bias
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Test MSE, Bias and Variance
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Can we actually compute those?

For a Linear Model

For the KNN regression fit
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Training errors will decline while test errors will decline at first (as 

reductions in bias dominate) but will then start to increase again (as 

increases in variance dominate).

A Fundamental Picture

Overfitting boils

down to this!!!
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A More Fundamental Picture
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Question Time!

What is Statistical Learning?

Why do we estimate f?

How do we estimate f?

What does the bias-variance trade-off state?

Some important taxonomies … you should by heart!

• Prediction vs. Inference

• Parametric vs. Non Parametric models

• Regression vs. Classification problems

• Supervised vs. Unsupervised learning

ModelX Y/G


