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Abstract: In this paper a method for the evaluation of roundabout performance, based on the image processing of 
field survey data, is presented. The methodology of investigation consists of the following three main steps: a field 
survey to collect vehicular flow images using video cameras, the processing of images gathered by the VeTRA 
(Vehicle Tracking for Roundabout Analysis) software program and the analysis of the trajectories extracted. The 
methodology enables the automatic computation of the information required to rank and evaluate a generic 
roundabout: the Entry/Exit (E/E) matrix with vehicle classification (i.e. heavy, light and motorbikes), identification of 
vehicle trajectories, and extraction of vehicular speed/curvature diagrams along the paths inside the roundabout. The 
proposed image processing stage overcomes classic problems encountered with image processing such as shadows, 
object occlusions, and the unpredictable influence of wind or clouds. Calibration and error evaluation are obtained 
from data collected by a high precision GPS-RTK system mounted on a probe vehicle.  

 

1. INTRODUCTION 

Nowadays, the roundabout is one of the most widely used 
solutions for road intersections, both in urban and rural 
environments and in European and other developed 
countries (Curti et al., 2008). This is mainly due to the 
potential benefits in terms of safer operations on the road 
network deriving from the reduction in operating speeds 
and in the number of conflict points with respect to 
traditional intersections. However, the performance of 
some roundabouts cannot be considered satisfactory and 
many of them could be improved in order to match driver 
expectations. 
This lack of efficiency is normally attributed to less than 
optimum choices made at design stage, roundabout 
geometric dimensions and organization of elements (i.e., 
entry and exit lane width, central island diameter, entry and 
exit angles, angles between legs, etc.); all these factors 
affect functional performance in terms of capacity and 
safety. This has been confirmed by many studies 
(Rodegerdts et al., 2007) recently included in the Highway 
Safety Manual (TRB, 2010). The most interesting result 
relates to the fact that, under certain conditions, the 
conversion of a traditional intersection into a roundabout 
can lead to an increase in the number of accidents. 
The aim of this paper is to introduce a survey methodology, 
developed to investigate such phenomena, which is based 
on the collection and analysis of video sequences. This 
methodology could be applied to the original intersection, 
prior to conversion into a roundabout, in order to gain the 
required knowledge regarding capacity requirement. It can 
then be applied to the new roundabout created to evaluate 
the effectiveness of same. As suggested also by Guido et al. 

(2010), real trajectories and operating speeds, recorded 
directly from vehicles in a roundabout, can confirm 
whether the design assumptions are correct and how close 
to the expected performance the actual one is. In particular, 
expected performance can be verified by designers using 
swept path of turn, and comparisons can be carried out 
using speed and curvature diagrams. Moreover, it should be 
noted that operating speed diagrams can indicate whether 
the curvature of the four types of maneuvers (i.e., right-
turn, crossing, left-turn and U-turn) leads to an effective 
speed reduction. 
In the following, we present VeTRA (Vehicle Tracking for 
Roundabout Analysis), a software program developed to 
obtain true vehicle paths, kinematic variables, and the 
roundabout entry/exit (E/E) demand matrix through video 
analysis. It constitutes the first step in an extensive 
research, the purpose of which is to obtain efficient tools 
for the analysis of individual road elements. In the next 
section, pre-processing of images, vehicles tracking, and 
post-processing of data performed by VeTRA are 
described; in Section 3 the results obtained from the images 
collected in a field survey are presented (i.e. E/E matrix, 
flow classification, trajectories, and speed profiles); Section 
4 provides some discussion of results, and outlines future 
research steps. 

2. IMAGE PROCESSING IN VeTRA  

2.1 Pre-Processing 

For an accurate reconstruction of vehicle trajectories, a 
proper image pre-processing is needed on the images 
collected in the field survey as depicted in Figure 1. Firstly, 
the optical radial distortion, caused by less than ideal 
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camera lenses, has to be removed, so that lines and 
circles/ellipses in the scene correspond to lines and ellipses 
on the image plane. When doing this, the Bouguet camera 
model is computed by using calibration data, in the form of 
check-board images (Camera calibration toolbox, 2010) 
and is used for image un-distortion. 
After un-distortion, image rectification is performed to 
recover constant pixel density of lines and angles for the 
projection of a specific plane of the observed world, i.e., 
the road pavement. This requires a homography between 
the pavement surface and the image plane to be recovered. 
In VeTRA we use a model based approach using the 
knowledge of the actual geometry of the intersection 
surveyed: the circular central island becomes an ellipse 
after perspective projection (Dihn et al. 2011).  
In our case, a model of the external circle of the central 
island is built using (0,0) as central coordinates and the real 
radius of the central island. By applying the camera 
perspective transformation (partially known from 
calibration) to this geometrical model, the expected edge of 
the elliptical central island projection on the image plane is 
obtained. However, the true position of the camera with 
respect to the island (i.e. the extrinsic parameters) is 
unknown and needs to be estimated. In VeTRA, this is 
done by applying a genetic algorithm optimization 
procedure (Weise, 2009) in order to minimize the distance 
of the pixels in the real island contour of the image and the 
projection of the island model using camera calibration 
parameters, i.e., our unknowns. This optimization process 
provides a complete projective transformation from the 3D 
world to the 2D image and, by constraining world points to 
lie on the ground, this transformation becomes the 
homography we are interested in. A rectified image is then 
obtained having the roundabout in the center of the image 
and occupying the whole frame (see Figure 1).  

 
Fig. 1. The pre-processing chain of VeTRA software  

2.1 Vehicle Tracking 

Vehicle tracking in VeTRA is performed, on the movie 
resulting from pre-processing, by applying the following 
actions to each frame:  
1. adaptive background modeling and subtraction to 

detect moving objects in the scene;  
2. foreground identification through shadow and noise 

removal to get image areas representing vehicle 
(referred to as blobs hereafter);  

3. association of newly detected blobs with previously 
tracked vehicles;  

4. trajectory update for the tracked vehicles according to 
the new information. 

All these activities rely on a proper model of the 
background that has to be robust with respect to changeable 
light conditions and camera displacements. In VeTRA this 
is achieved by the adaptation mechanism already 
introduced by Bonarini et al. (2006), in which each pixel is 
updated in the model by using a convex combination 
between its present value and the observed image. This 
updating mechanism is continuously performed in the areas 
of the image where no vehicles are present. A more 
detailed description of the background modeling approach 
can be found in the aforementioned paper. 
Once the background model is available, vehicles can be 
extracted from the background by simple background 
subtraction, i.e. subtraction of the background model from 
the current frame. Pixels differing from the background 
beyond a given threshold (different for each pixel and 
derived from an estimate of the image noise for that pixel) 
are considered to be vehicles. In general, the above 
mentioned process overestimates vehicle size due to the 
presence of shadows. Since shadows affect the intensity of 
pixels, but not their hue and saturation components, 
VeTRA can establish whether a pixel belongs to the vehicle 
shadow or to the vehicle itself by using a threshold on the 
intensity channel. Morphological operators are then applied 
to the binary mask obtained at this stage in order to 
improve its quality by removing “salt and pepper” noise 
and filling gaps introduced by shadow removal. 
Each vehicle in the scene is tracked across the sequence of 
images by using a Kalman filter (Grewal and Andrews, 
2001) applied to blobs extracted in the image plane. In this 
context, the Kalman filter provides the a-posteriori 
probability of a vehicle position in the current image 
through the integration of a sequence of vehicle silhouettes 
extracted by the image processing algorithm. Kalman 
filtering requires a linear motion and a linear measurement 
models both affected by Gaussian noise; if such models are 
not linear it is possible to use the extended, i.e. linearized, 
version of the filter.  
In VeTRA, the motion model f employed for the tracking 
of vehicles is a uniform circular motion and is expressed in 
a polar reference frame. The measurement equation h is 
given by the coordinates, in pixels, of the vehicle center on 
the image plane. The system state of the k-th vehicle 
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Kalman tracker comprises vehicle position (ρ, θ), radial 
and angular speeds (v, w), and the center of rotation (cx,cy), 
i.e. the center of the roundabout, in image coordinates: 

. 

(1)

 

State and measurements are assumed to be affected by 
uncorrelated, zero mean, Gaussian noise: 

  .
 (2) 

By expressing the motion in a polar reference frame, the 
equation involved can be simplified obtaining a linear 
Kalman update. From simulated runs and tests on real data, 
the use of polar coordinates offers better performances with 
respect to the same motion model expressed in a Cartesian 
reference frame. This can be understood by looking at the 
uncertainty representation, for a point in circular motion, 
given by this parameterization. Gaussian uncertainties in 
the (ρ, θ) motion plane translate into crescent-shaped 
uncertainties in the corresponding Cartesian frame (see 
Figure 2). This is sounder than the ellipse shaped error that 
we would otherwise obtain using a Cartesian reference 
frame, and it partially overcomes the limitations implied in 
the linear/Gaussian assumptions of Kalman Filter. 
The outcome of the Kalman filter is an estimate of vehicle 
position with its uncertainty in the form of Gaussian 
distribution. This uncertainty information can be used to 
compute the Mahalanobis distance between the expected 
position of the tracked vehicle and its measured position 
when performing data association. The Mahalanobis 
distance is calculated between the blob center and the 
position predicted by the Kalman Filter (part of the state 
vector ) with its associated uncertainty ( ). Being the 
position modeled in a polar reference frame, the blob center 
coordinates on the image plane [mxb

,myb
,]T are first 

converted to this frame:  

 
(3) 

being 

 
(4) 

then the Mahalanobis (dm) distance is computed as 

 
(5) 

and through uncertainty propagation we obtain the 
following formula for the filter covariance (being AK and 
BK the Jacobians of the Mahalonobis distance with respect  
 

 
Fig. 2. Gaussian position uncertainty for a vehicle (the star) 
moving around the centre of the roundabout (the square) as 
represented, in the Cartesian plane, when using polar 
representation (dark grey) or Cartesian representation of the 
motion (light grey).  

to errors): 

  

 
(6) 

The evaluation of the difference in the center of mass of the 
blob and the tracked vehicle were chosen instead of the 
NIS (Normalized Innovation Squared), because, with the 
latter, the linearization carried on h wastes the physical 
meaning of the uncertainty of position estimate, by 
approximating the crescent shaped error with an ellipsoidal 
one (see again Figure 2). Blob to target Mahalanobis 
distance is not the only metric used to perform data 
association. In particular, the information about blob and 
tracker areas, perimeters and color histograms are used as 
well. For the scalar values (i.e., area and perimeter) a 
dissimilarity metric (ds) is computed as the absolute value 
of the difference/sum ratio bounding it inside the (0,1) 
interval 
 

 

 
(7) 

 

while, for histogram dissimilarity the (0,1) bounded 
Bhattacharyya distance (dh) (Aherne et al., 1997) is used  
 

 
(8) 

 

Blobs (identified with b hereafter) are then compared to 
targets (identified with t hereafter) by using a simple score 
that combines all these metrics: 

 
(9) 

The data association process is quite simple: all the blob-
tracker pairs are evaluated, and for each pair the 
dissimilarity score is evaluated. A preliminary gating is 
performed, discarding blobs-tracker pairs that are too far 
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away (in a Euclidean sense) from each other. These pairs 
are assigned an infinite score. A second gating is carried 
out by looking at the score, discarding blob-tracker pairs 
whose score is greater than a given threshold; these pairs 
are also assigned an infinite score. Then all the scores are 
ranked in ascending order, and starting from the lowest 
score, blob-tracker pairs are associated. Multiple 
associations are prevented by tagging blob and tracker as 
already associated. 
During Kalman filter updates, the area, perimeter, and 
histogram stored in the tracker are also updated using a first 
order low pass IIR filter (this technique is also called 
exponential smoothing). An adequate choice of the filter 
time constant implements the change in the size, or in the 
histogram of the tracked object, needed, for instance, in the 
presence of perspective deformations or variable light 
conditions. 
On completion of the association procedure, the fate of the 
blobs and trackers depends on their association state: i) 
blobs that have no tracker associated become new trackers, 
and they are initialized with blob descriptors and a default 
TTL (Time To Live); ii) trackers that have an associated 
blob get updated using the information carried by the blob, 
and their TTL is reset to default value; iii) trackers that 
have no blob associated are allowed to live for TTL time 
steps evolving by Kalman filter prediction; iv) dead 
trackers are discarded, and trajectories, areas, and 
perimeters are logged. 

2.2 Post Processing 
From the trajectories obtained by the tracking algorithm the 
E/E matrix can be extracted. The E/E matrix represents the 
matrix of all flow movements in the roundabout and 
normally some differences between this and the 
corresponding matrix of other intersections are evident as 
the u-turn is possible in the case of the roundabout. To 
compute the E/E matrix from the computed trajectories, a 
specific algorithm has been developed. This is necessary 
since the tracking system is not capable of ensuring that all 
revealed trajectories are complete from entry to exit (due to 
variable factors such as noise, wind, shadows and clouds). 
Matrix reconstruction thus requires the following steps: 

- deletion of trajectories with too short a length in terms 
of space and time (pure noise); 

- separation of over-complex trajectories resulting from 
errors in blob detection and tracking; 

- reduction of points in trajectories to avoid weird curves 
deriving from data association errors. 

 

From the remaining data, the flow is computed by counting 
the number of intersections between trajectories and 
segments corresponding to the entry/exit lines. By adopting 
this solution all possible trajectories entering or exiting the 
circulatory roadway are considered and problems due to 
perspective deformations are avoided.  
Trajectories on pavement surface can also be reconstructed 
from trajectories on the image plane and these can be 
obtained by using the known homography between the two 

planes. Although the homography used for image 
rectification could be re-used for this purpose, a different 
one has been used so as to increase the overall precision of 
the system. RTK-GPS data from an instrumented vehicle 
have been collected in synchrony with the image 
acquisition and a homography has been obtained between 
these data and the trajectory of the instrumented vehicle 
tracked by the VeTRA algorithm. To avoid outliers due to 
noise or other problems which lead to difficulties in the 
extraction of the homography between the RTK-GPS data 
and the image trajectories, the RANSAC method 
introduced by Fischler and Bolles (1981) was applied in the 
version proposed by Zuliani (2010). 
By using the homography from an instrumented vehicle, it 
is possible to compensate for errors resulting from the 
difference between the center of mass of the blob 
associated with a vehicle and the projection of the center of 
mass of the vehicle. This requires different homographies 
for each vehicular class since they suffer significantly 
different deformations on the image plane. Classification of 
flow is also necessary to improve the overall performance 
of the flow count, speed diagram and trajectory path. A 
classification has thus been carried out to detect three 
classes of vehicle: 

- bikes and motorbikes; 
- light vehicles, vans and campers; 
- heavy vehicles. 

 

Classification consists of a local classifier and a voting 
system. The local classifier, implemented through a feed 
forward neural network, determines, for each frame, the 
vehicle class according to the position and area of the blob 
within the image.  
Position is necessary since the same vehicle has different 
areas in different points of the image due to perspective 
deformation. The voting system collects the results of local 
classifiers for all points in the trajectory and then it selects 
the most frequent among the three different vehicle classes.  

3. RESULTS 

The results presented here are based on a survey carried out 
at a four-leg roundabout, located in a typical Italian urban 
environment (see Figure 3). The external diameter of the 
roundabout is 48 m and the circulatory roadway width is 
11.6 m. The average width of entry links is 8 m with two 
lanes, and 6 m for exit ones.  
As previously mentioned, the instrumentation used to 
collect the data for roundabout performance evaluation 
consists of a vision system and a RTK-GPS system both 
connected to a dedicated PC. The origin of the final 
reference system has been located in the center of the 
roundabout. It must be emphasized that, due to the 
particular position of the camera with respect to the center 
of the roundabout, the circulatory roadway between the 
legs 3 and 4 in Figure 3 presents the maximum occlusion 
effect. 
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TABLE 1.  E/E matrix estimation (percentages refer to the 
total of crossing vehicles), and comparisons with values 

estimated manually by video analysis 

VeTRA (1) 
Links  1 2 3 4 Tot. 

1 0.483 3.384 22.149 0.514 26.531 
2 3.267 0.234 4.930 7.966 16.397 
3 19.229 3.411 0.000 7.510 30.151 
4 1.896 11.599 13.201 0.226 26.922 

Tot. 24.875 18.628 40.281 16.216 100.000
Average estimation of three operators (2) 

1 0.399 2.929 20.905 0.466 24.700 
2 3.262 0.200 4.660 7.856 15.979 
3 19.774 4.727 0.266 7.124 31.891 
4 2.064 11.917 13.116 0.333 27.430 

Tot. 25.499 19.774 38.948 15.779 100.000
Error (Difference 1-2) 

1 0.083 0.455 1.244 0.048 1.830 
2 0.005 0.034 0.269 0.110 0.418 
3 -0.544 -1.316 -0.266 0.387 -1.740 
4 -0.168 -0.319 0.086 -0.107 -0.508 

Tot. -0.624 -1.416 1.333 0.438 0.000 
 

3.1 E/E analysis 

According to the methodology described above, the 
software detected 2,214 trajectories in the recorded video; 
1,152 of which, their origin or destination not yet 
identified, were not directly associated to an E/E pair. The 
E/E matrix has been corrected by a two-step process:  

- an a-priori probability was calculated by valid 
trajectories (those with two intersection points);  

- unassigned trajectories were assigned to the matrix 
according this a priori probability.  

This approach has been validated by a detailed check of all 
cases with one intersection point, where limited 
performance was due exclusively to occlusions.  
By manual measurement, carried out by three operators on 
the same video recording, it was possible to evaluate the 
performance of the system. The data reported in Table 1 are 
the percentage of the total movements recorded by VeTRA 
and those derived by the three operators. In the last section 
of the table, the percentage difference between the two 
estimates confirms that there is an acceptable maximum 
divergence of 1.5%. It should be noted that this result is 
affected by the position of the camera and it could be 
improved further by a proper positioning of same. In fact, 
the trajectories coming from entrances 3 and 4, and those 
directed to the exits 1 and 2 are underestimated, since they 
cross the zone affected by occlusion effects (see Figure 3).  

3.2 Flow classification  

The local classifier can correctly classify about 98% of 
blobs in the trajectories. No ambiguity arises for heavy 
vehicles, but the distinction between some small vehicles 
and motorcycles appears to be less reliable. The voting 
schema has then been to group vehicles in all cases.  

 
Fig. 3. Image of the roundabout considered for VeTRA 
validation 

3.3 Trajectories and speed profiles analysis  

Vehicle positions derived from the image analysis were 
compared with the corresponding positions derived from 
the RTK-GPS. The greatest distance between 
corresponding points is mainly evident on the legs. When a 
restricted analysis on the circulatory roadway is performed, 
distances between corresponding points are smaller. This 
leads to the conclusion that, for measurements regarding 
this case study, data on links need a better acquisition and 
must be excluded for software validation purposes.  
The analysis of these data demonstrates the reliability of 
VeTRA:  

- median of position error is equal to 0.375 m; 
- median of absolute deviations (MAD) is 0.179 m;  
- inter-quartile range (IQR) is 0.399 m. 

The comparison between speed values derived by VeTRA 
and those determined by the RTK-GPS has been 
considered taking the GPS data as reference. The error rate 
of VeTRA has a mean equal to 0.11 km/h and a standard 
deviation equal to 2.71 km/h. Those data have been 
calculated on 2.8 km traveled by the probe vehicle inside 
the circulatory roadway. 
Figure 4A shows the curvature diagrams along the 
trajectory for one couple of E/E. In the diagrams, positive 
and negative values are considered according to the usual 
sign rule (positive for right turns and negative for left 
ones). Curvature lines are in grey, entry and exit sections 
are identified by black points while the average curvature 
line is black. Data are reported along the trajectory inside 
the roundabout referring to its middle point (0 m). 
Speed profiles have been derived taking into consideration 
only those cars entering into the roundabout at a speed of 
not lower than 5 km/h, as, when operating speeds have to 
be derived, only isolated and unconditioned cars need to be 
considered. The 85th percentile of a sample of 
unconditioned speeds is commonly accepted as a good 
estimate of operating speed in a specific location.  
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 (A) (B) 

Fig. 4. (A) Curvature (grey curves) and average curvature 
(black curves) [1/m] profiles of the trajectories worked out 
for one E/E couple; (B) Speed profiles (light grey) [km/h] 
for the same E/E couple. Average speed (black curves) and 
operating speed (grey curves) diagrams. Initial and final 
points of trajectories in the circulating roadway are plotted 
as black points. X-axis in [m] 

 
Figure 4B shows the speed profiles of each vehicle (light 
grey curves), the entry and exit points in the circulating 
roadway (red points), the average speed (black curve) and 
the 85th percentile speed (grey curve). Average and 
operating speeds are affected by moderate noise due to 
tracking system noise. It can be observed that operating 
speeds in the circulatory roadway are lower than 40 km/h. 

4. CONCLUSION 

In this paper a method for the analysis of roundabout 
performance, based on image processing, has been 
presented basing on a specific software program (VeTRA) 
Results have proven that the software is very efficient in 
the evaluation of the E/E flow matrix, trajectories and 
speed profiles. Flow analyses performed by VeTRA have 
confirmed its capability of dealing with errors caused by 
occlusions. Comparisons with data derived by manual 
counting show a very low absolute average error of 0.7%, 
with a peak value of 2.1% while vehicle classification is 
reliable in all cases. 
The trajectory reconstruction provides good results when 
the analysis is restricted to points close to the camera. 
Speed profiles are almost insensitive to tracking system 
errors. However, in a few cases, outliers and noise limit the 
performance of VeTRA and a smoothing algorithm is 
necessary to ensure more stable and reliable results. 
The above mentioned performances encourage further 
VeTRA improvements including: 
a) an image stabilization system to eliminate the effects 

of camera oscillations due to wind; 
b) an improved background modeling and foreground 

extraction system for optimization in the presence of 
clouds, poor light and reflections; 

c) an algorithm for the division and fusion of blobs to 
limit the effects of dynamic occlusions; 

d) a simulation system in which vehicles are substituted 
by a 3D model in order to recover a precise relation 

between the real position of cars and their position on 
the image plane without the need of the probe vehicle 

A few of these improvements (a and b) have already been 
developed and integrated (though not yet tested) into the 
software. Moreover, the authors are working on new 
surveying approaches with respect to the camera 
arrangement. At this time, the following two options are 
being considered: vertical position in the center of the 
central island and lateral/central position of three cameras 
operating simultaneously. In both cases, the aim is the 
maximum possible reduction in the number of errors 
related to occlusion and perspective deformation. 
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