

Pattern Analysis and Machine Intelligence

Prof. Matteo Matteucci

Recall from the first lecture ...

Continuous Regression Output Discrete **Classification** Output Clustering **Partitions**

Pattern Analysis & Machine Intelligence

POLITECNICO DI MILANO

Example: Default dataset

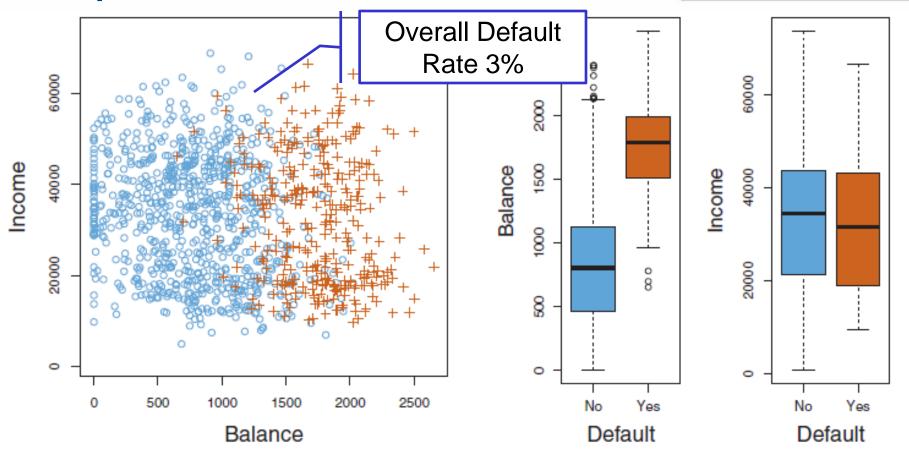


FIGURE 4.1. The Default data set. Left: The annual incomes and monthly credit card balances of a number of individuals. The individuals who defaulted on their credit card payments are shown in orange, and those who did not are shown in blue. Center: Boxplots of balance as a function of default status. Right: Boxplots of income as a function of default status.

Pattern Analysis & Machine Intelligence

Linear regression for classification?

- Suppose to predict the medical condition of a patient.
 How should this be encoded?
 - We could use dummy variables in case of binary output

 $Y = \begin{cases} 0 & \text{if stroke}; \\ 1 & \text{if drug overdose.} \end{cases}$

but how to deal with multiple output?

Different encodings could result in different models

$$Y = \begin{cases} 1 & \text{if stroke}; \\ 2 & \text{if drug overdose}; \\ 3 & \text{if epileptic seizure.} \end{cases} Y = \begin{cases} 1 & \text{if epileptic seizure}; \\ 2 & \text{if stroke}; \\ 3 & \text{if drug overdose.} \end{cases}$$

Recall here the Bayesian Classifier

• For a classification problem we can use the error rate i.e.

Error Rate =
$$\sum_{i=1}^{n} I(y_i \neq \hat{y}_i) / n$$

- Where $I(y_i \neq \hat{y}_i)$ is an indicator function, which will give I if the condition $(y_i \neq \hat{y}_i)$ is correct, otherwise The best classifier
- The error rate represents the fraction of n possible estimates the classifications, or misclassifications probability!!
- The Bayes Classifier minimizes the Average Test Error Rate

$$\max_{j} P(Y = j | X = x_{0})$$

• The **<u>Bayes error rate</u>** refers to the lowest possible Error Rate achievable knowing the "true" distribution of the data

$$1 - E\left(\max_{j} \Pr(Y = j|X)\right)$$

Logistic Regression

• We want to model the probability of the class given the input

$$p(X) = \Pr(Y = 1|X)$$
$$p(X) = \beta_0 + \beta_1 X$$

but a linear model has some drawbacks

Example: Default data & Linear Regression

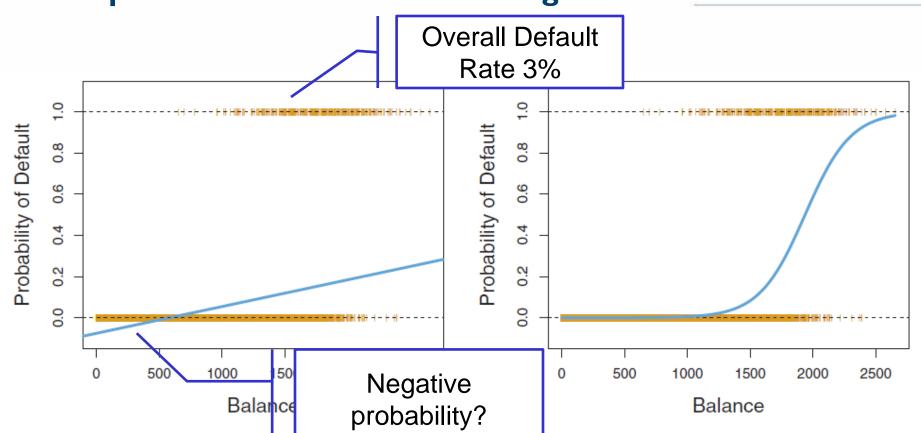


FIGURE 4.2. Classification using the Default data. Left: Estimated probability of default using linear regression. Some estimated probabilities are negative! The orange ticks indicate the 0/1 values coded for default(No or Yes). Right: Predicted probabilities of default using logistic regression. All probabilities lie between 0 and 1.

Logistic Regression

• We want to model the probability of the class given the input

$$p(X) = \Pr(Y = 1|X)$$
$$p(X) = \beta_0 + \beta_1 X$$

but a linear model has some drawbacks

 Logistic regression solves the negative probability (ad other issues as well) by regressing the logistic function

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

Example: Default data & Logistic Regression 9

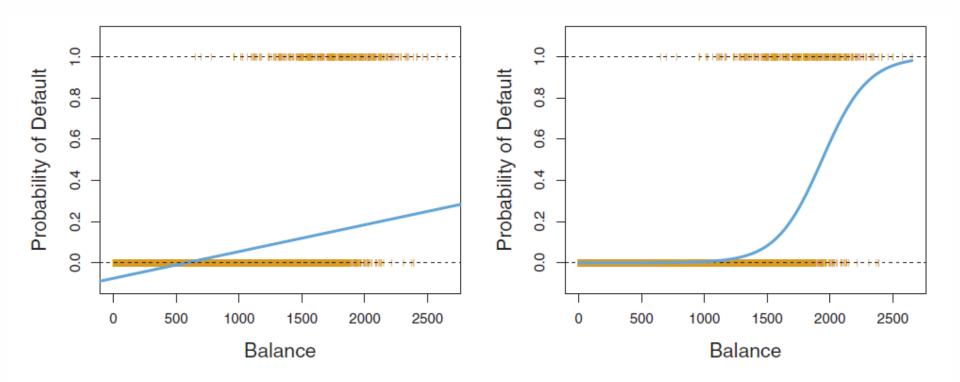


FIGURE 4.2. Classification using the Default data. Left: Estimated probability of default using linear regression. Some estimated probabilities are negative! The orange ticks indicate the 0/1 values coded for default(No or Yes). Right: Predicted probabilities of default using logistic regression. All probabilities lie between 0 and 1.

Logistic Regression

• We want to model the probability of the class given the input

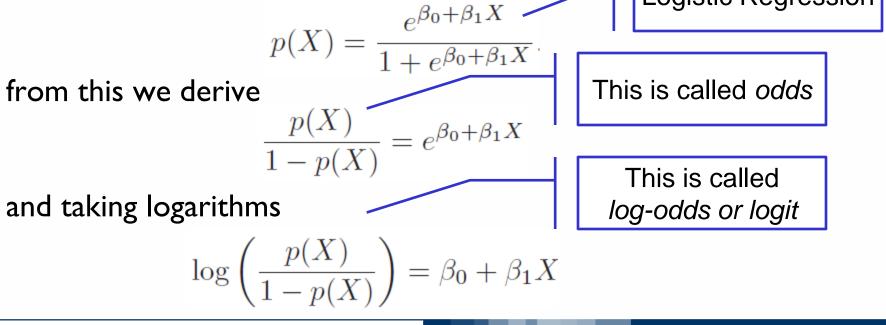
$$p(X) = \Pr(Y = 1|X)$$
$$p(X) = \beta_0 + \beta_1 X$$

Linear Regression

10

but a linear model has some drawbacks (see later slide)

 Logistic regression solves the negative probability (ad other issues as well) by regressing the logistic function Logistic Regression



Pattern Analysis & Machine Intelligence

POLITECNICO DI MILANO

Coefficient interpretation

• Interpreting what β_1 means is not very easy with logistic regression, simply because we are predicting P(Y) and not Y.

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

- If β_1 =0, this means that there is no relationship between Y and X
- If $\beta_1 > 0$, this means that when X gets larger so does the probability that Y = I
- If $\beta_1 < 0$, this means that when X gets larger, the probability that Y = I gets smaller.
- But how much bigger or smaller depends on where we are on the slope, i.e., it is not linear

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

Ш

Training Logistic Regression (1/4)

• For the basic logistic regression wee need two parameters

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

 In principle we could use (non linear) Least Squares fitting on the observed data the corresponding model

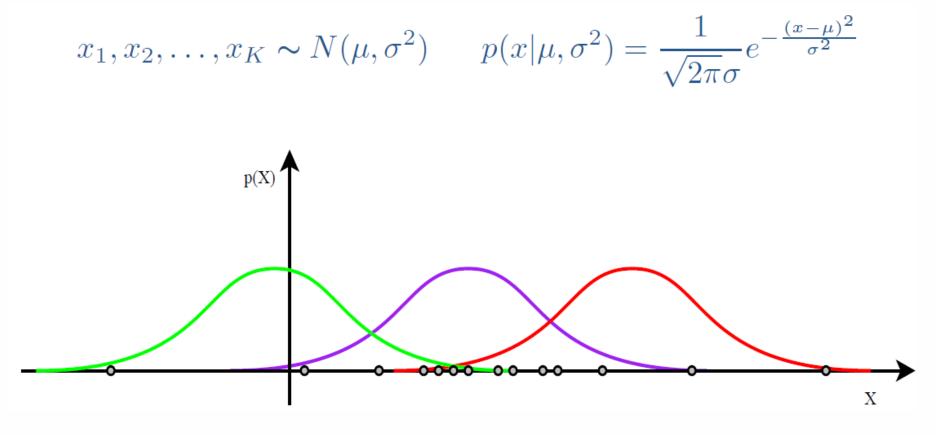
$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

- But a more principled approach for training in classification problems is based on Maximum Likelihood
 - We want to find the parameters which maximize the likelihood function

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

Maximum Likelihood flash-back (1/6)

 Suppose we observe some i.i.d. samples coming from a Gaussian distribution with known variance:



Which distribution do you prefer?

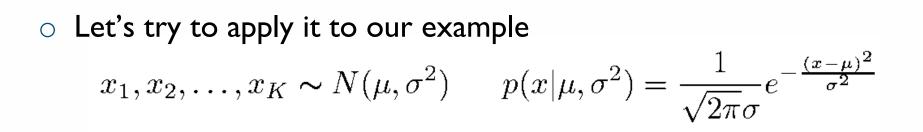
Maximum Likelihood flash-back (2/6)

- There is a simple recipe for Maximum Likelihood estimation
 - 1. Write the likelihood $L = P(Data|\theta)$ for the data
 - 2. (Take the logarithm of likelihood $\mathcal{L} = \log P(Data|\theta)$)
 - 3. Work out $\partial L/\partial \theta$ or $\partial \mathcal{L}/\partial \theta$ using high-school calculus
 - 4. Solve the set of simultaneous equations $\partial \mathcal{L} / \partial \theta_i = 0$
 - 5. Check that θ^{mle} is a maximum

• Let's try to apply it to our example

$$x_1, x_2, \dots, x_K \sim N(\mu, \sigma^2)$$
 $p(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{\sigma^2}}$

Maximum Likelihood flash-back (3/6)



I. Write le likelihood for the data

$$L(\mu) = p(x_1, x_2, \dots, x_N | \mu, \sigma^2) = \prod_{n=1}^N p(x_n | \mu, \sigma^2)$$

$$= \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_n-\mu)^2}{2\sigma^2}}$$

Pattern Analysis & Machine Intelligence

POLITECNICO DI MILANO

15

ъ т

Maximum Likelihood flash-back (4/6)

- Let's try to apply it to our example $x_1, x_2, \dots, x_K \sim N(\mu, \sigma^2)$ $p(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{\sigma^2}}$
- 2. (Take the logarithm of the likelihood -> log-likelihood)

$$\mathcal{L} = \log \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$= \sum_{n=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma}} e^{xp(-\frac{(x_n-\mu)^2}{2\sigma^2})}$$
$$= N(\log \frac{1}{\sqrt{2\pi\sigma}}) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n-\mu)^2$$

Maximum Likelihood flash-back (5/6)

- Let's try to apply it to our example $x_1, x_2, \dots, x_K \sim N(\mu, \sigma^2)$ $p(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{\sigma^2}}$
- 3. Work out the derivatives using high-school calculus

$$\frac{\partial \mathcal{L}}{\partial \mu} = \frac{\partial}{\partial \mu} N(\log \frac{1}{\sqrt{2\pi\sigma}}) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2$$
$$= -\frac{1}{2\sigma^2} \frac{\partial}{\partial \mu} \sum_{n=1}^{N} (x_n - \mu)^2 =$$
$$= \frac{1}{2\sigma^2} \sum_{n=1}^{N} 2(x_n - \mu)$$

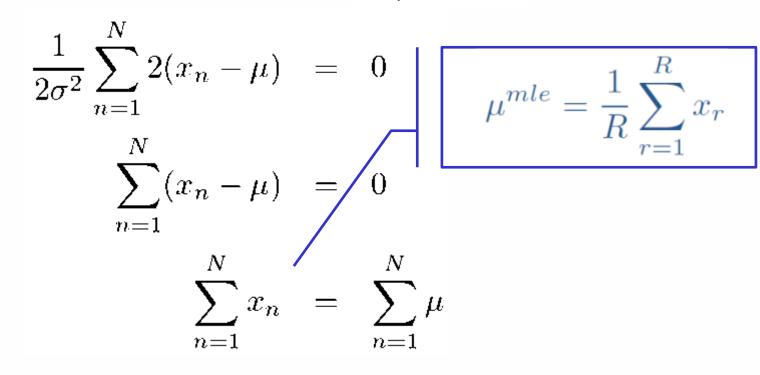
Pattern Analysis & Machine Intelligence

POLITECNICO DI MILANO

Maximum Likelihood flash-back (6/6)

• Let's try to apply it to our example $x_1, x_2, \dots, x_K \sim N(\mu, \sigma^2)$ $p(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{\sigma^2}}$

4. Solve the unconstrained equations $\partial \mathcal{L}/\partial \theta_i = 0$



Pattern Analysis & Machine Intelligence

POLITECNICO DI MILANO

Training Logistic Regression (1/4)

• For the basic logistic regression wee need two parameters

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

 In principle we could use (non linear) Least Squares fitting on the observed data the corresponding model

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

- But a more principled approach for training in classification problems is based on Maximum Likelihood
 - We want to find the parameters which maximize the likelihood function

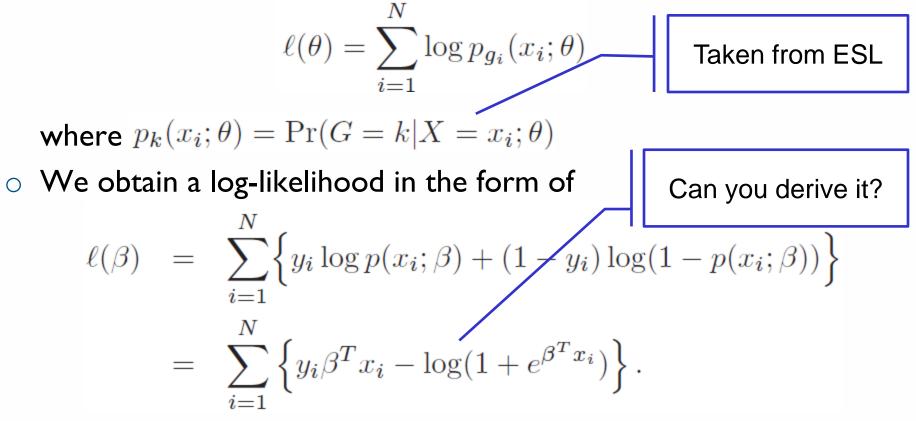
$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

Training Logistic Regression (2/4)

Let's find the parameters which maximize the likelihood function

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

If we compute the log-likelihood for N observations



Pattern Analysis & Machine Intelligence

Training Logistic Regression (3/4)

• Let's find the parameters which maximize the likelihood function

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

- Z-statistics has the same role of the regression t-statistics, a large value means the parameter is not null
- Intercept does not have a particular meaning is used to adjust the probability to class proportions

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

TABLE 4.1. For the **Default** data, estimated coefficients of the logistic regression model that predicts the probability of **default** using **balance**. A one-unit increase in **balance** is associated with an increase in the log odds of **default** by 0.0055 units.

Example: Default data & Logistic Regression 22

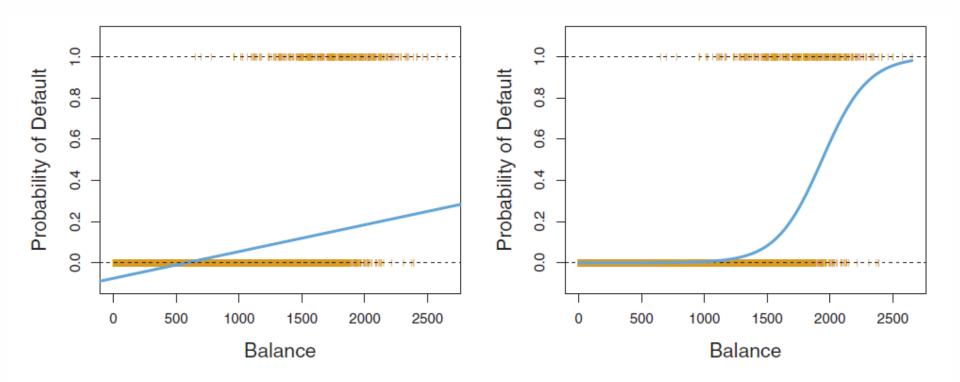


FIGURE 4.2. Classification using the Default data. Left: Estimated probability of default using linear regression. Some estimated probabilities are negative! The orange ticks indicate the 0/1 values coded for default (No or Yes). Right: Predicted probabilities of default using logistic regression. All probabilities lie between 0 and 1.

Training Logistic Regression (4/4)

• Let's find the parameters which maximize the likelihood function

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

 We can train the model using qualitative variables through the use of binary (dummy) variables

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
<pre>student[Yes]</pre>	0.4049	0.1150	3.52	0.0004

TABLE 4.2. For the **Default** data, estimated coefficients of the logistic regression model that predicts the probability of **default** using student status. Student status is encoded as a dummy variable, with a value of 1 for a student and a value of 0 for a non-student, and represented by the variable **student[Yes]** in the table.

Making predictions with Logistic Regression 24

- Once we have the model parameters we can predict the class
- The Default probability having 1000\$ balance is <1%

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1,000}}{1 + e^{-10.6513 + 0.0055 \times 1,000}} = 0.00576$$

while with a balance of 2000\$ this becomes 58.6%

 With qualitative variables, i.e., dummy variables, we get that being a students results in

$$\widehat{\Pr}(\texttt{default=Yes}|\texttt{student=Yes}) = \frac{e^{-3.5041+0.4049\times1}}{1+e^{-3.5041+0.4049\times1}} = 0.0431$$
$$\widehat{\Pr}(\texttt{default=Yes}|\texttt{student=No}) = \frac{e^{-3.5041+0.4049\times0}}{1+e^{-3.5041+0.4049\times0}} = 0.0292$$

Multiple Logistic Regression

 So far we have considered only one predictor, but we can extend the approach to multiple regressors

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1+e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

• By maximum likelihood we learn the corresponding parameters

	Coefficient	Std. error	Z-statistic	P-value	
Intercept	-10.8690	0.4923	-22.08	< 0.0001	
balance	0.0057	0.0002	24.74	< 0.0001	
income	0.0030	0.0082	0.37	0.7115	
<pre>student[Yes]</pre>	-0.6468	0.2362	-2.74	0.0062	
TABLE 4.3. For the Default data, e sion model that predicts the probability What about this?					
student status. Student status is encoded as a aummy variable student[Yes],					
with a value of 1 for a student and a value of 0 for a non-student. In fitting this					
nodel, income was me	easured in thou	sands of doll	ars.		

Pattern Analysis & Machine Intelligence

POLITECNICO DI MILANO

An apparent contradiction

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004
Positive				
	Coefficient	Std. Error	Z-statist	ic P-val
Intercept	-10.8690	0.4923	-22.0	0.00 > 80
balance	0.0057	0.0002	24.7	74 < 0.00
income	0.0030	0.0082	0.3	0.71
student[Yes]	-0.6468	0.2362	-2.7	74 0.00
Negative!!!				

Example: Confounding in Default data set

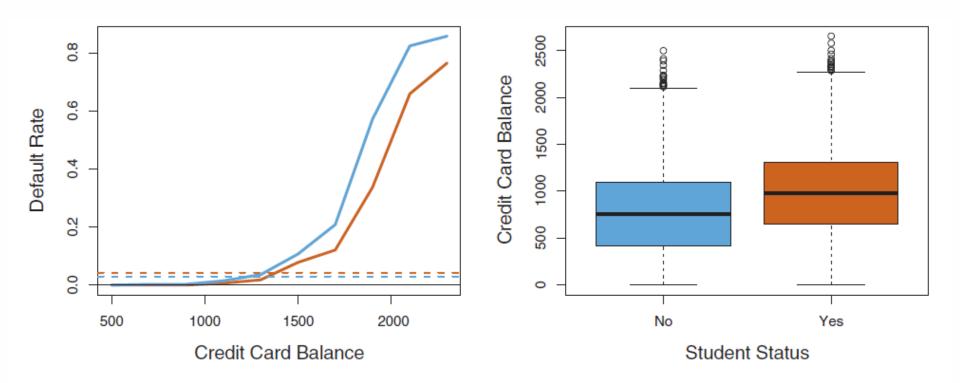


FIGURE 4.3. Confounding in the **Default** data. Left: Default rates are shown for students (orange) and non-students (blue). The solid lines display default rate as a function of **balance**, while the horizontal broken lines display the overall default rates. Right: Boxplots of **balance** for students (orange) and non-students (blue) are shown.

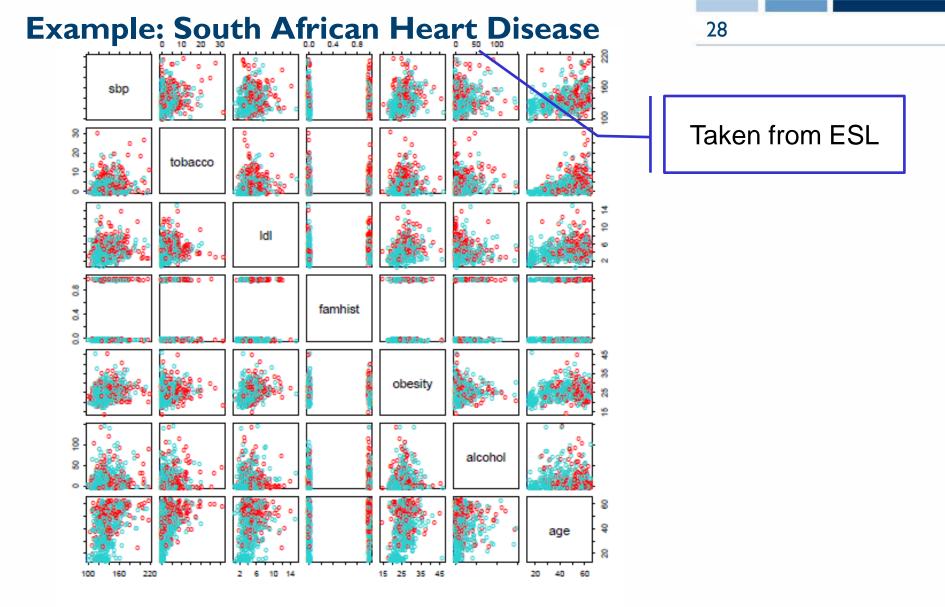


FIGURE 4.12. A scatterplot matrix of the South African heart disease data. Each plot shows a pair of risk factors, and the cases and controls are color coded (red is a case). The variable family history of heart disease (famhist) is binary (yes or no).

Pattern Analysis & Machine Intelligence

POLITECNICO DI MILANO

Logistic Regression for Feature Selection

29

If we fit the complete model on these data we get

TABLE 4.2. Results from a logistic regression fit to the South Af

disease data.

	Coefficient	Std. Error	Z Score
(Intercept)	-4.130	0.964	-4.285
sbp	0.006	0.006	1.023
tobacco	0.080	0.026	3.034
ldl	0.185	0.057	3.219
famhist	0.939	0.225	4.178
obesity	-0.035	0.029	-1.187
alcohol	0.001	0.004	0.136
age	0.043	0.010	4.184

Taken from ESL

Taken from ESL

• While if we use stepwise Logistic Regression

TABLE 4.3. Results from stepwise logistic regression fit to South African heart disease data.

	Coefficient	Std. Error	Z score
(Intercept)	-4.204	0.498	-8.45
tobacco	0.081	0.026	3.16
ldl	0.168	0.054	3.09
famhist	0.924	0.223	4.14
age	0.044	0.010	4.52

Pattern Analysis & Machine Intelligence

POLITECNICO DI MILANO

Logistic Regression parameters meaning

 Regression parameters represent the increment on the logit of probability given by a unitary increment of a variable

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- Let consider the increase of tobacco consumption in life od IKg, this count for an increase in log-odds of exp(0.081)=1.084 which means an overall increase of 8.4%
- With a 95% confidence interval $\exp(0.081 \pm 2 \times 0.026) = (1.03, 1.14)$

				Taken from ESL
	Coefficient	Std. Error	$Z \operatorname{scor}$	Taken num ESL
(Intercept)	-4.204	0.498	-8.45	
tobacco	0.081	0.026	3.16	
ldl	0.168	0.054	3.09	
famhist	0.924	0.223	4.14	
age	0.044	0.010	4.52	

TABLE 4.3. Results from stepwise logistic regression fit to South African heart disease data.

Pattern Analysis & Machine Intelligence

POLITECNICO DI MILANO

Regularized Logistic Regression

• As for Linear Regression we can compute a "Lasso" version $\max_{\beta_0,\beta} \left\{ \sum_{i=1}^{N} \left[y_i(\beta_0 + \beta^T x_i) - \log(1 + e^{\beta_0 + \beta^T x_i}) \right] - \lambda \sum_{j=1}^{p} |\beta_j| \right\}$

Regularized Logistic Regression

• As for Linear Regression we can compute a "Lasso" version

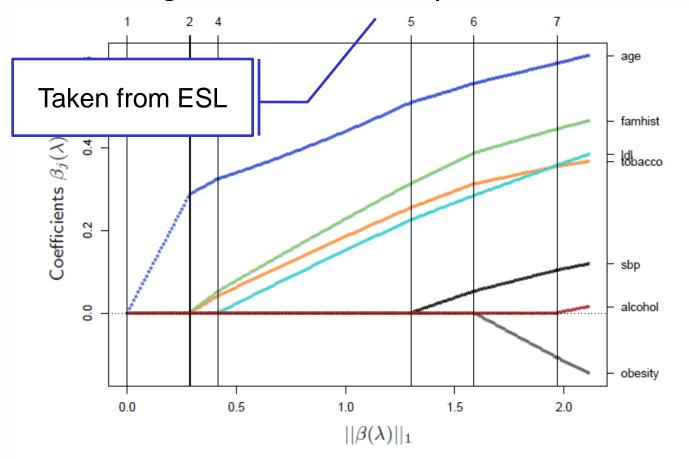


FIGURE 4.13. L_1 regularized logistic regression coefficients for the South African heart disease data, plotted as a function of the L_1 norm. The variables were all standardized to have unit variance. The profiles are computed exactly at each of the plotted points.

Pattern Analysis & Machine Intelligence

POLITECNICO DI MILANO

Multiclass Logistic Regression

 Logistic Regression extends naturally to multiclass problems by computing the log-odds w.r.t. the Kth class

$$\log \frac{\Pr(G = 1 | X = x)}{\Pr(G = K | X = x)} = \beta_{10} + \beta_1^T x$$

$$\log \frac{\Pr(G = 2 | X = x)}{\Pr(G = K | X = x)} = \beta_{20} + \beta_2^T x$$

$$\vdots$$

$$\log \frac{\Pr(G = K - 1 | X = x)}{\Pr(G = K | X = x)} = \beta_{(K-1)0} + \beta_{K-1}^T x$$

$$Comes from ESL, but it's worth knowing!!!
$$Notation different because it comes from ESL$$$$

33

• This is equivalent to

$$\Pr(G = k | X = x) = \frac{\exp(\beta_{k0} + \beta_k^T x)}{1 + \sum_{\ell=1}^{K-1} \exp(\beta_{\ell 0} + \beta_\ell^T x)}, \ k = 1, \dots, K-1,$$

$$\Pr(G = K | X = x) = \frac{1}{1 + \sum_{\ell=1}^{K-1} \exp(\beta_{\ell 0} + \beta_\ell^T x)},$$
(4.18)

• Can you prove it ?!?!?

Wrap-up on Logistic Regression

• We model the log-odds as a linear regression model

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

This means the posterior probability becomes

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

- Parameters represent log-odds increase per variable unit increment keeping fixed the others
- We can use it to perform feature selection using z-scores and forward stepwise selection
- The class decision boundary is linear, but points close to the boundary count more ... this will be discussed later