

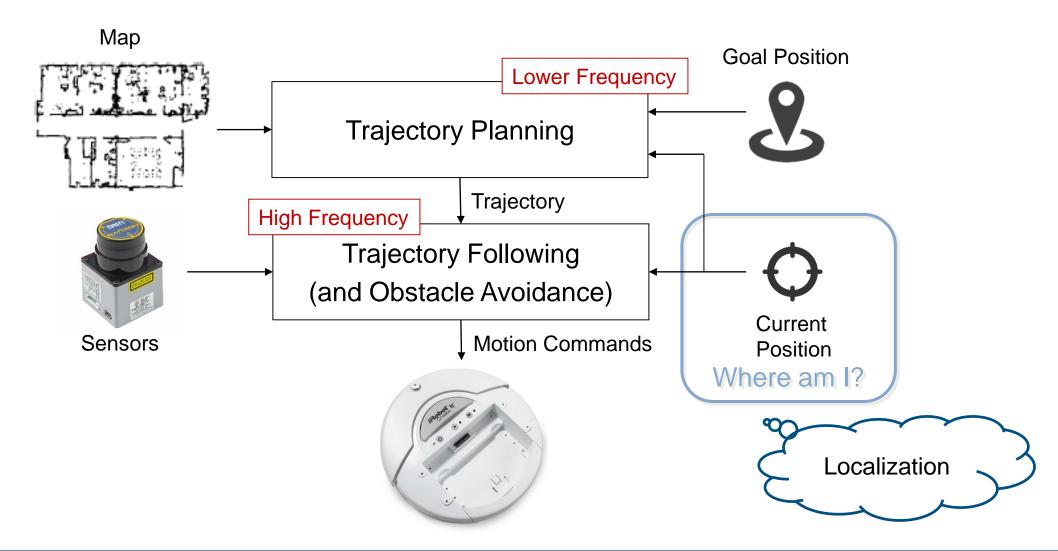
Robotics

Robot Localization – Sensor Models and Bayesian Filtering

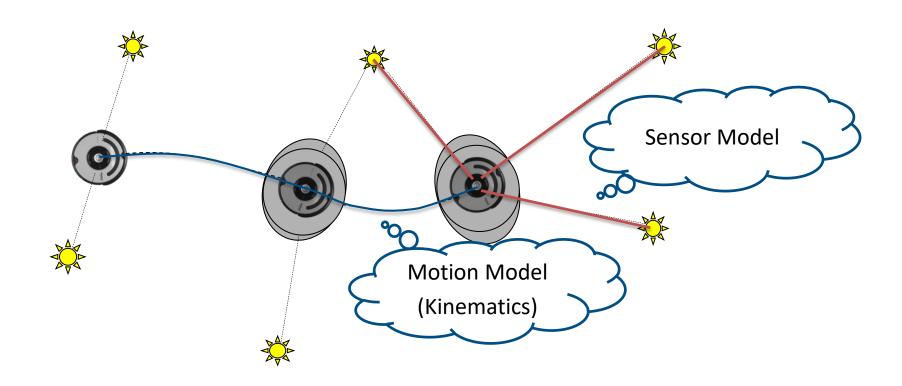
Matteo Matteucci matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

A Simplified Sense-Plan-Act Architecture

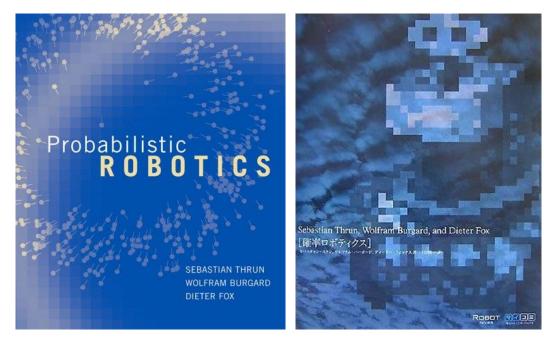


Localization with Knowm Map



Disclaimer ...

Slides from now on have been heavily "inspired" by the teaching material kindly provided with: S. Thrun, D. Fox, W. Burgard. "*Probabilistic Robotics*". MIT Press, 2005

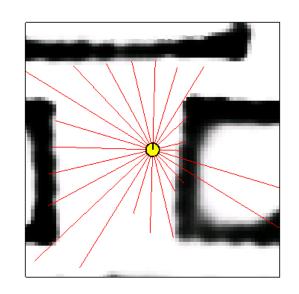


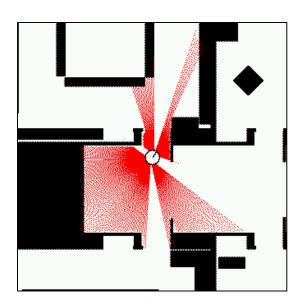
http://robots.stanford.edu/probabilistic-robotics/

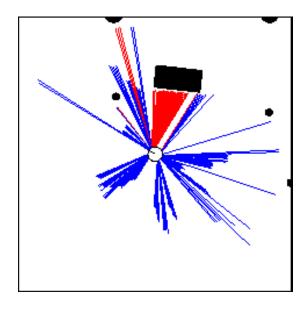
You can refer to the original source for deeper analysis and references on the topic ...

Range Sensors Models

The sensor model describes P(z|x), i.e., the probability of a measurement z given that the robot is at position x.







Proximity Sensors

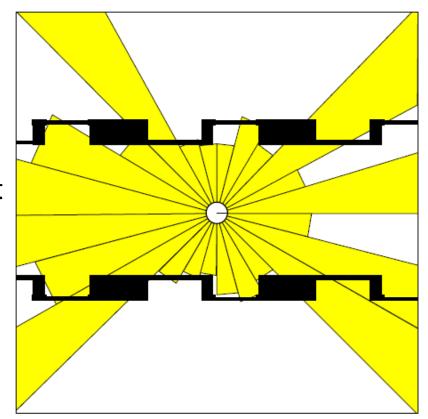
The sensor model describes P(z|x), i.e., the probability of a measurement z given that the robot is at position x.

In particular a scan z consists of K measurements.

$$z = \{z_1, z_2, ..., z_K\}$$

Individual measurements are independent given robot position and surrounding map.

$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$

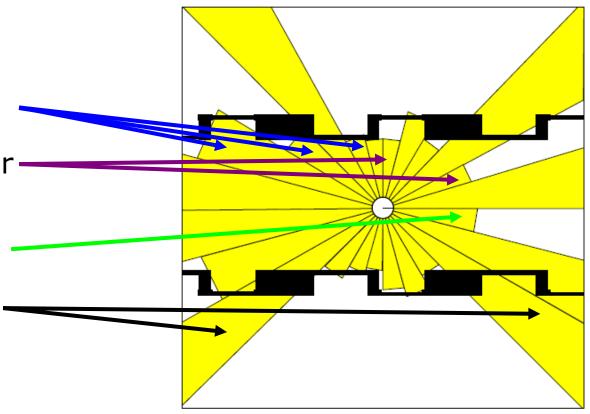


Typical Measurement Errors of an Range Measurements

The sensor model describes P(z|x), i.e., the probability of a measurement z given that the robot is at position x.

Masurements can come from:

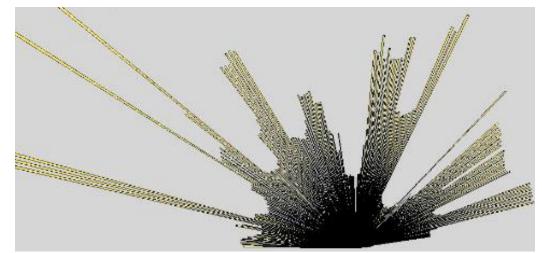
- 1. Beams reflected by obstacles
- 2. Beams reflected by persons or caused by crosstalk
- 3. Random measurements
- 4. Max range measurements



Distance perception: Laser Range Finder

Lasers are definitely more accurate sensors

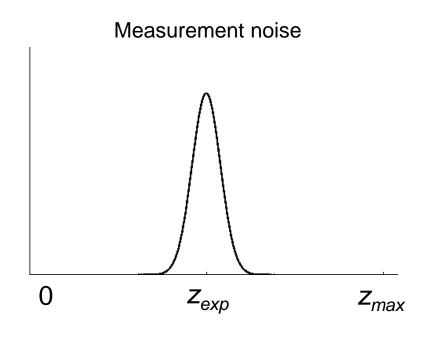
- 180 ranges over 180° (up to 360°)
- 1 to 64 planes scanned, 10-75 scans/s
- <1cm range resolution</p>
- Max range up to 50-80 m
- Issues with mirrors, glass, and matte black.



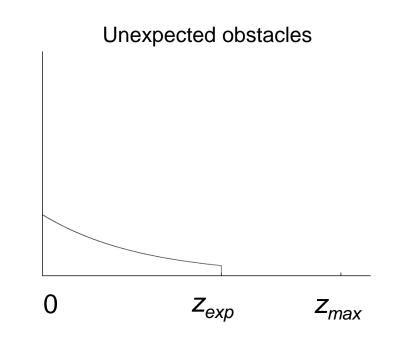
~ 10.000€

Beam Sensor Model (I)

The laser range finder model describe each single measurement using



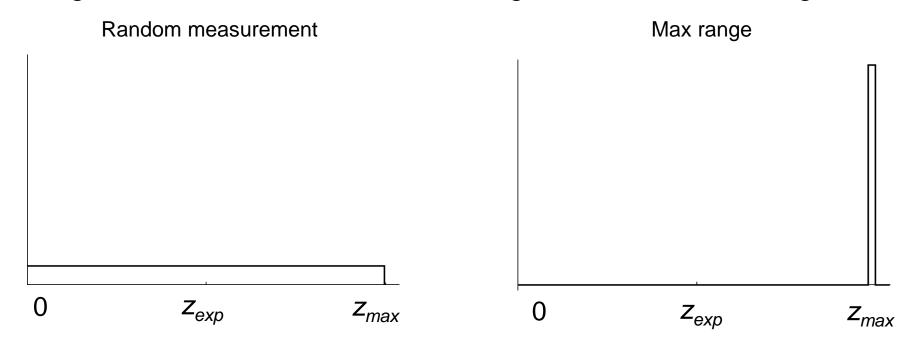
$$P_{hit}(z \mid x, m) = \eta \frac{1}{\sqrt{2\pi b}} e^{-\frac{1}{2}\frac{(z - z_{exp})^2}{b}}$$



$$P_{hit}(z \mid x, m) = \eta \frac{1}{\sqrt{2\pi b}} e^{-\frac{1}{2}\frac{(z - z_{\text{exp}})^2}{b}} \qquad P_{\text{unexp}}(z \mid x, m) = \begin{cases} \eta \lambda e^{-\lambda z} & z < z_{\text{exp}} \\ 0 & otherwise \end{cases}$$

Beam Sensor Model (II)

The laser range finder model describe each single measurement using

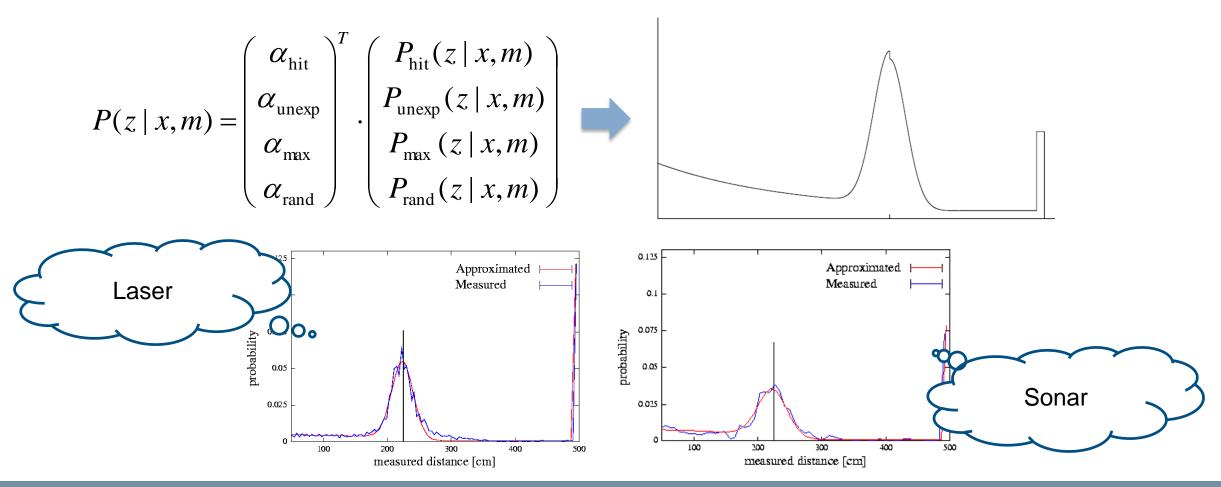


$$P_{rand}(z \mid x, m) = \eta \frac{1}{z_{\text{max}}}$$

$$P_{\max}(z \mid x, m) = \eta \frac{1}{z_{small}}$$

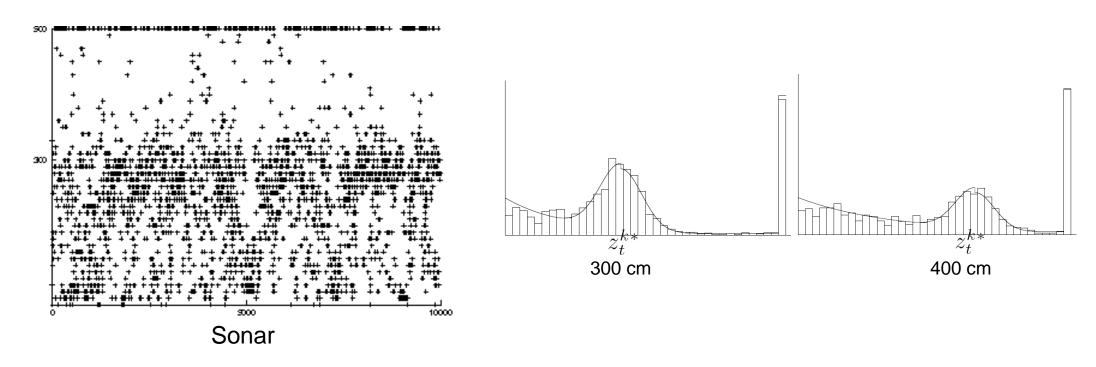
Beam Sensor Model (III)

The laser range finder model describe each single measurement using



Sensor Model Calibration (Sonar)

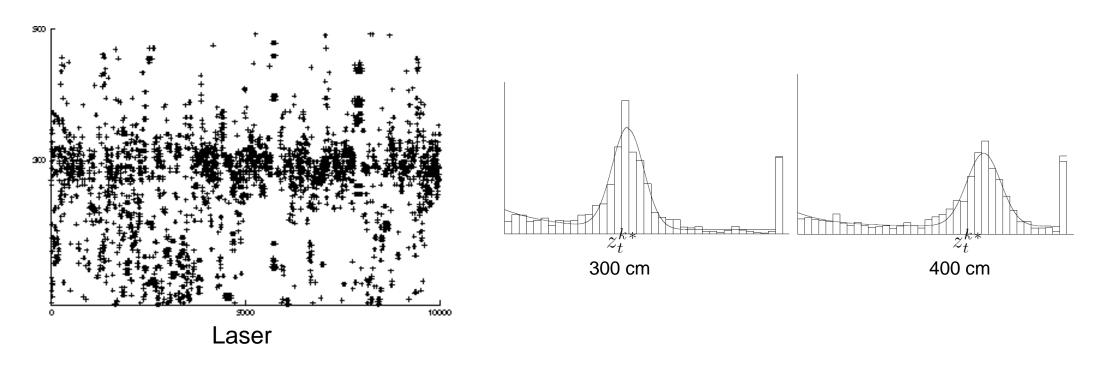
Acquire some data from the sensor, e.g., when the target is at 300 cm and 400 cm



Then estimate the model parameters via maximum likelihood: $P(z \mid z_{\text{exp}})$

Sensor Model Calibration (Laser)

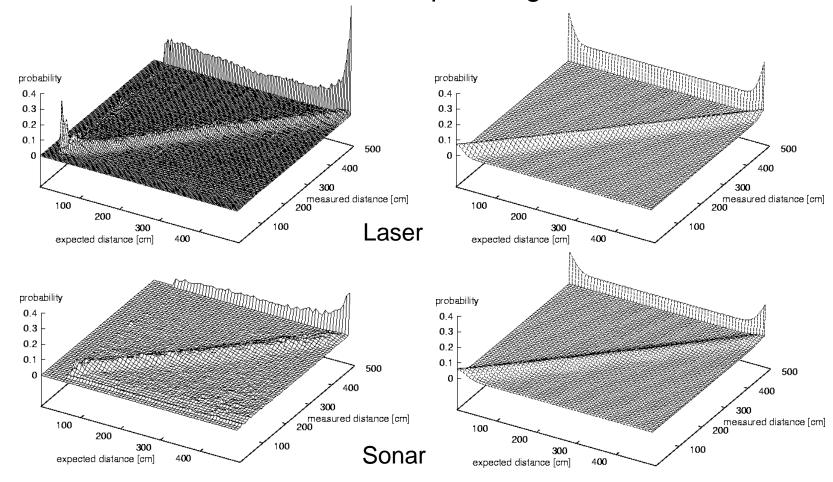
Acquire some data from the sensor, e.g., when the target is at 300 cm and 400 cm



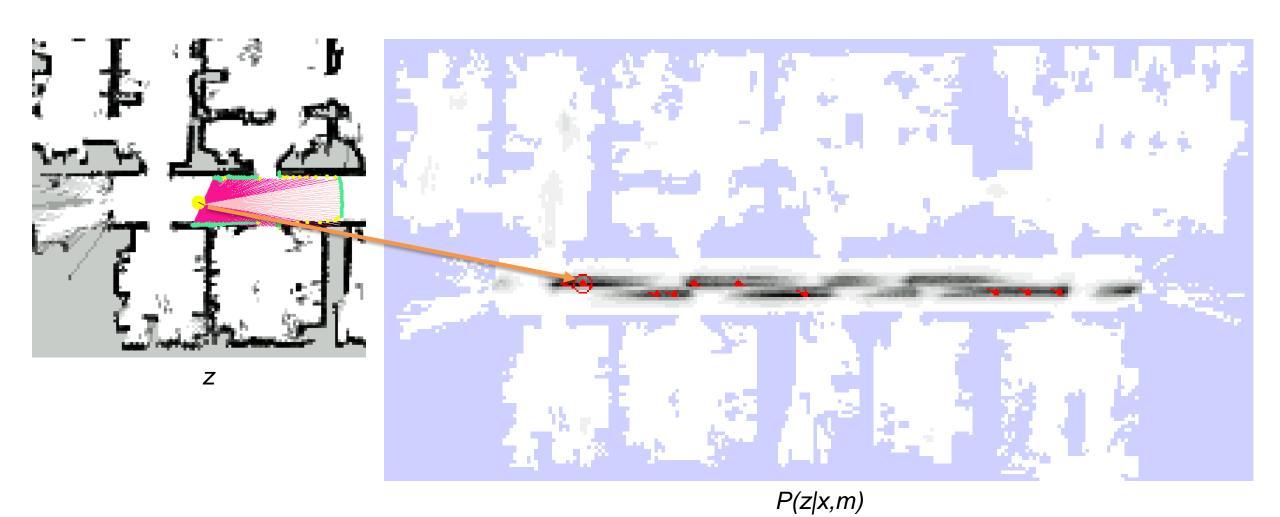
Then estimate the model parameters via maximum likelihood: $P(z \mid z_{\rm exp})$

Discete Model for Range Sensor

Instead of densities, consider discrete steps along the sensor beam



Sensor Model Likelihood



POLITECNICO MILANO 1863

Scan Sensor Model

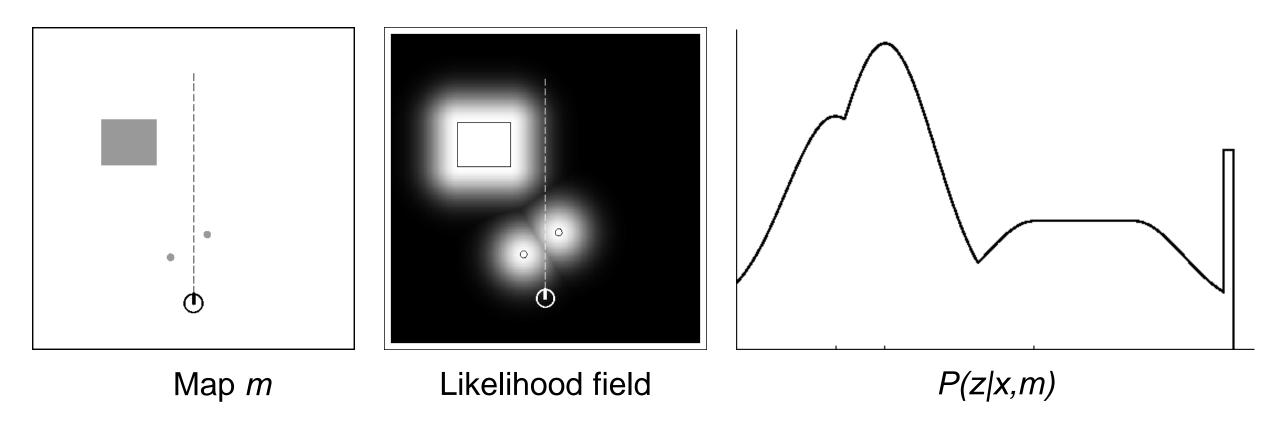
The beam sensor model assumes independence between beams and between physical causes of measurements and has some issues:

- Overconfident because of independency assumptions
- Need to learn parameters from data
- A different model should be learned for different angles w.r.t. obstacles
- Inefficient because it uses ray tracing

The Scan sensor model simplifies with:

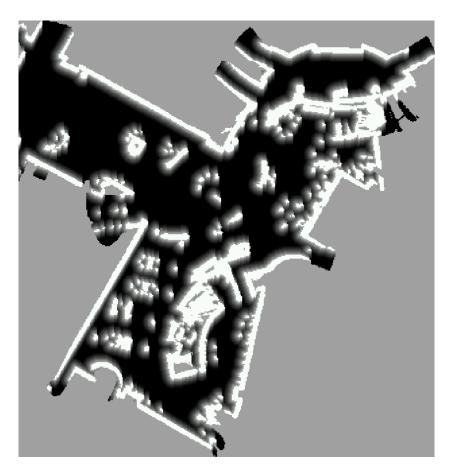
- Gaussian distribution with mean at distance to closest obstacle,
- Uniform distribution for random measurements, and
- Small uniform distribution for max range measurements

Scan Sensor Model Example



San Jose Tech Museum

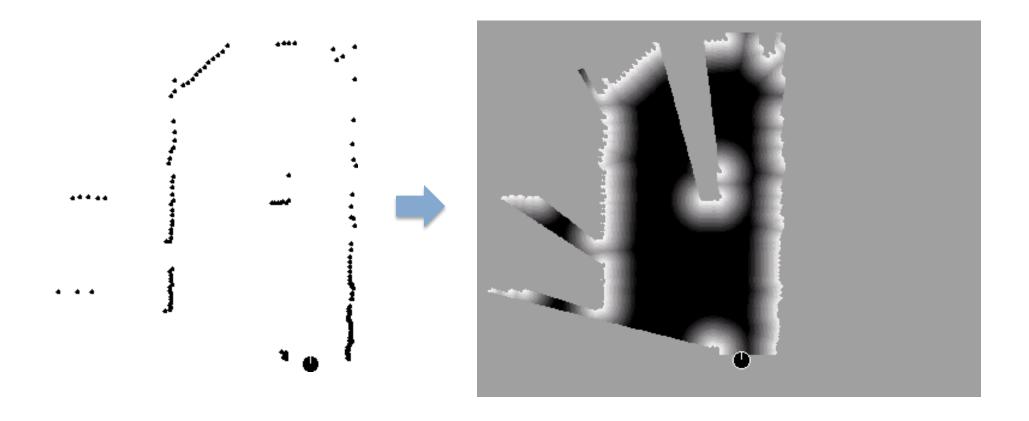
Occupancy grid map



Likelihood field

Scan Sensor Matching

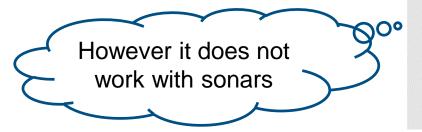
Extract likelihood field from scan and use it to match different scan:

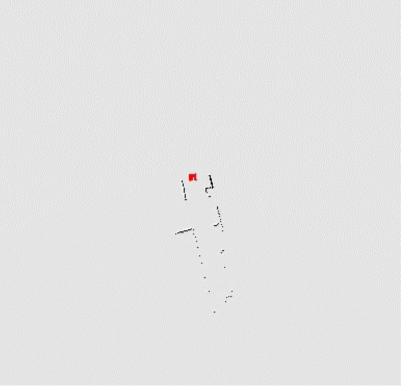


Scan Sensor Matching

Extract likelihood field from scan and use it to match different scan:

- Highly efficient, uses 2D tables only.
- Smooth with respect to small changes in robot position
- Allows gradient descent (scan matching)
- Ignores physical properties of beams.

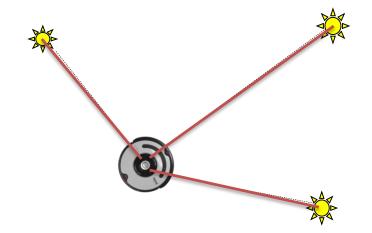


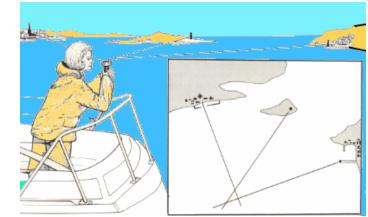


Landmarks

Landmark sensors provides

- Distance (or)
- Bearing (or)
- Distance and bearing





Can be obtained via

- Active beacons (e.g., radio, GPS)
- Passive (e.g., visual, retro-reflective)

Standard approach is triangulation

Landmark Models with Uncertainty

Explicitly modeling uncertainty in sensing is key to robustness:

- Determine parametric model of noise free measurement
- Analyze sources of noise
- Add adequate noise to parameters (eventually mix in densities for noise)
- Learn (and verify) parameters by fitting model to data

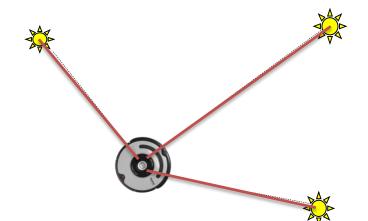
The likelihood of measurement is given by "probabilistically comparing" the actual with the expected measurement.

Landmark Detection Model

For landmak i in map m the measurement $z = (i, d, \alpha)$ for a robot at (x, y, θ) is given by

$$\hat{d} = \sqrt{(m_x(i) - x)^2 + (m_y(i) - y)^2}$$

$$\hat{a} = \operatorname{atan2}(m_{y}(i) - y, m_{x}(i) - x) - \theta$$



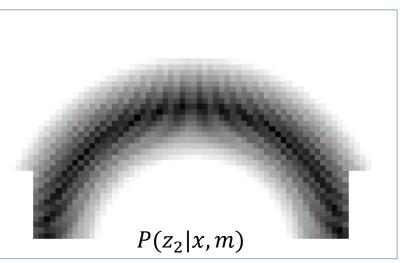
Detection probability might depend on the distance/bearing

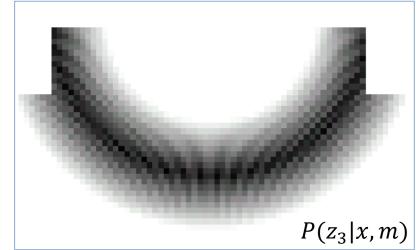
$$p_{\text{det}} = \text{prob}(\hat{d} - d, \varepsilon_d) \cdot \text{prob}(\hat{\alpha} - \alpha, \varepsilon_\alpha)$$

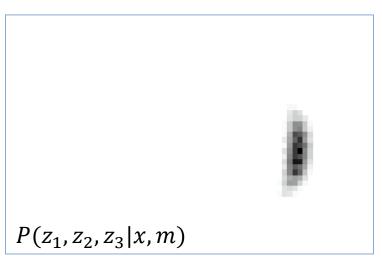
Then we have to take into account false positives too

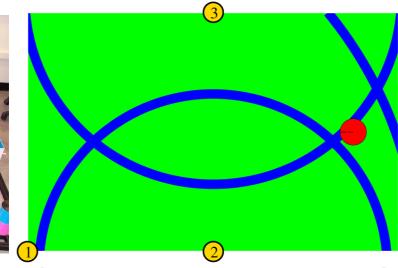
$$z_{\text{det}} p_{\text{det}} + z_{\text{fp}} P_{\text{uniform}}(z \mid x, m)$$

RoboCup Example

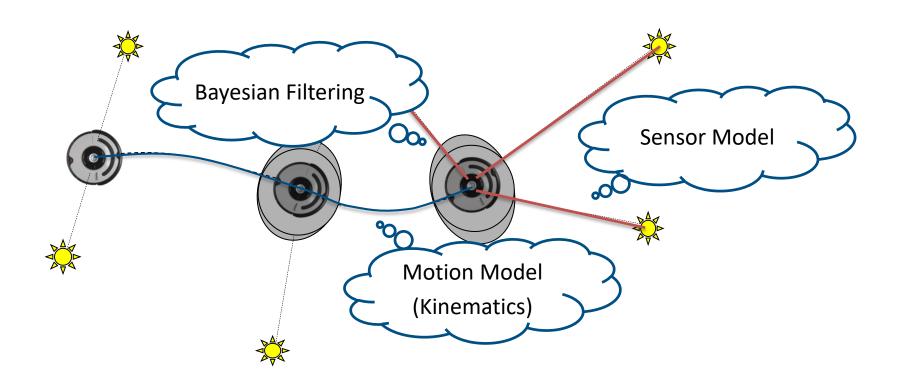




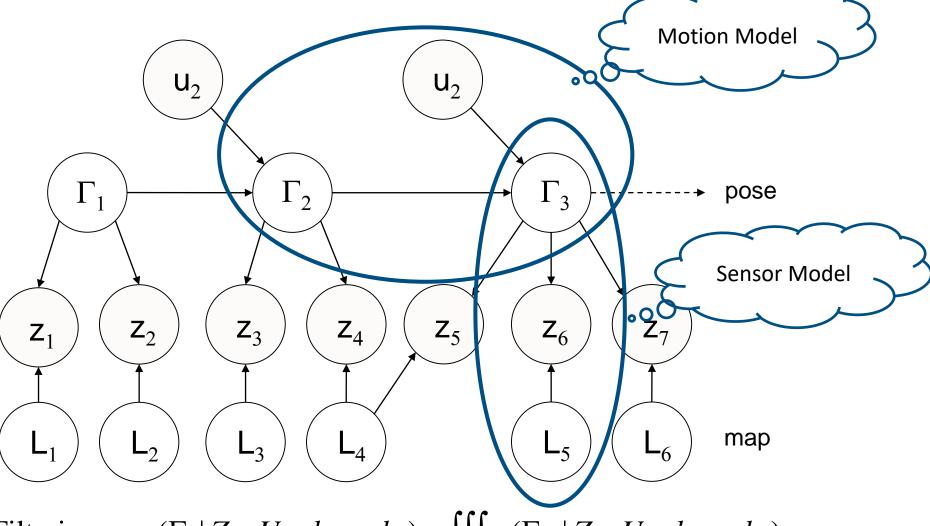




Localization with Knowm Map



Dynamic Bayesian Networks and Localization



Filtering:
$$p(\Gamma_t | Z_{1:t}, U_{1:t}, l_1, ..., l_N) = \iiint_{1:t-1} p(\Gamma_{1:t} | Z_{1:t}, U_{1:t}, l_1, ..., l_N)$$

Bayesian Filtering Framework

We want to compute an estimate of the posterios probability of robot state x_t

$$Bel(x_t) = P(x_t | u_1, z_1 ..., u_t, z_t)$$

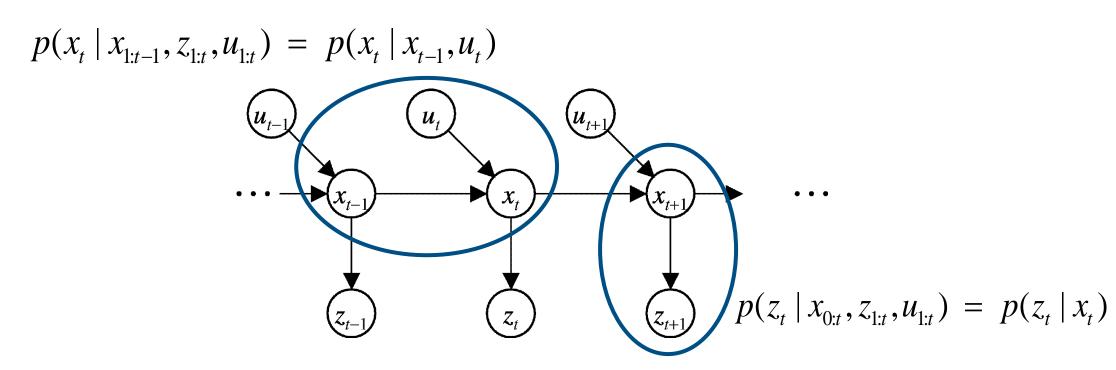
from the stream of information about movement and sensors

$$d_t = \{u_1, z_1, \dots, u_t, z_t\}$$

In particular we assume known:

- The prior probability of the system state $P(x_0)$
- The motion model P(x'|x,u)
- The sensor model P(z|x,m)

Markov Assumptions



Underlining assumption behind Bayes filtering:

- Perfect model, no approximation errors
- Static and stationary world
- Independent noise

Bayes Filters

$$\begin{array}{ll} \boxed{\textit{Bel}(x_t)} = P(x_t \mid u_1, z_1 \, ..., u_t, z_t, m) & \text{z = observation} \\ \text{Bayes} &= \eta \; P(z_t \mid x_t, u_1, z_1, ..., u_t, m) \; P(x_t \mid u_1, z_1, ..., u_t, m) \\ \text{Markov} &= \eta \; P(z_t \mid x_t, m) \; P(x_t \mid u_1, z_1, ..., u_t, m) \\ \text{Total prob.} &= \eta \; P(z_t \mid x_t, m) \; \int P(x_t \mid u_1, z_1, ..., u_t, x_{t-1}, m) \\ P(x_{t-1} \mid u_1, z_1, ..., u_t, m) \; dx_{t-1} \\ \text{Markov} &= \eta \; P(z_t \mid x_t, m) \; \int P(x_t \mid u_t, x_{t-1}) \; P(x_{t-1} \mid u_1, z_1, ..., u_t, m) \; dx_{t-1} \\ \text{Markov} &= \eta \; P(z_t \mid x_t, m) \; \int P(x_t \mid u_t, x_{t-1}) \; P(x_{t-1} \mid u_1, z_1, ..., z_{t-1}, m) \; dx_{t-1} \\ &= \eta \; P(z_t \mid x_t, m) \; \int P(x_t \mid u_t, x_{t-1}) \; Bel(x_{t-1}) \; dx_{t-1} \\ \end{array}$$

Bayes Filter Algorithm

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

Algorithm Bayes_filter(Bel(x), d):

$$\eta=0$$

if d is a perceptual data item z then

For all x do

$$Bel'(x) = P(z \mid x)Bel(x)$$

$$\eta = \eta + Bel'(x)$$

For all x do

$$Bel'(x) = \eta^{-1}Bel'(x)$$

else if d is an action data item u then

For all x do

$$Bel'(x) = \int P(x \mid u, x') Bel(x') dx'$$

return Bel'(x)

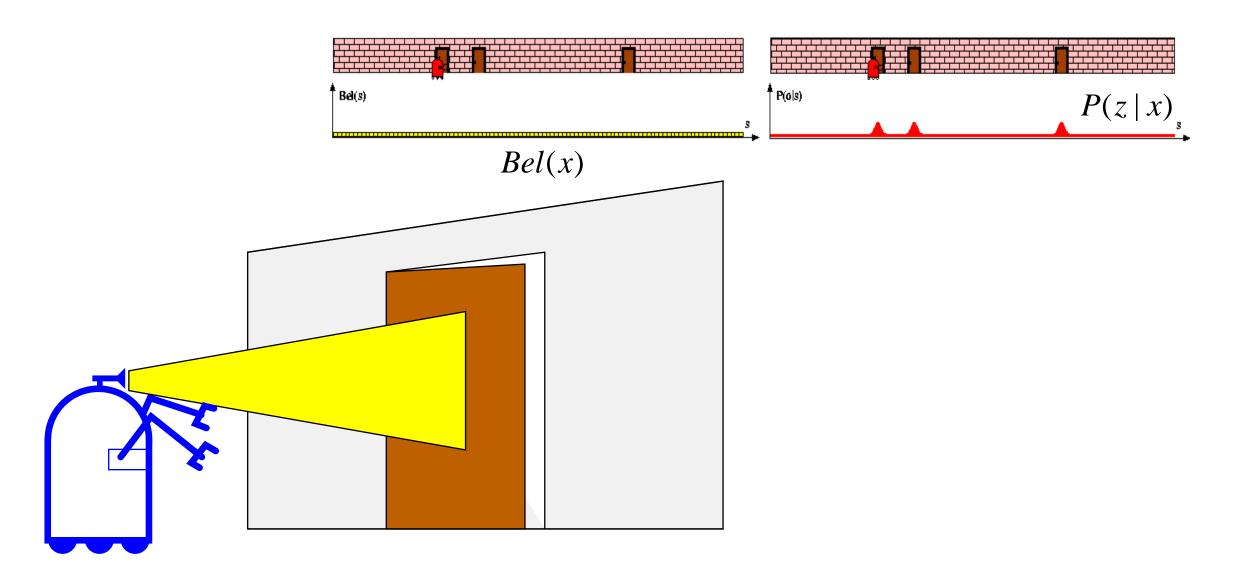
How to represent such belief?

Based on such representation:

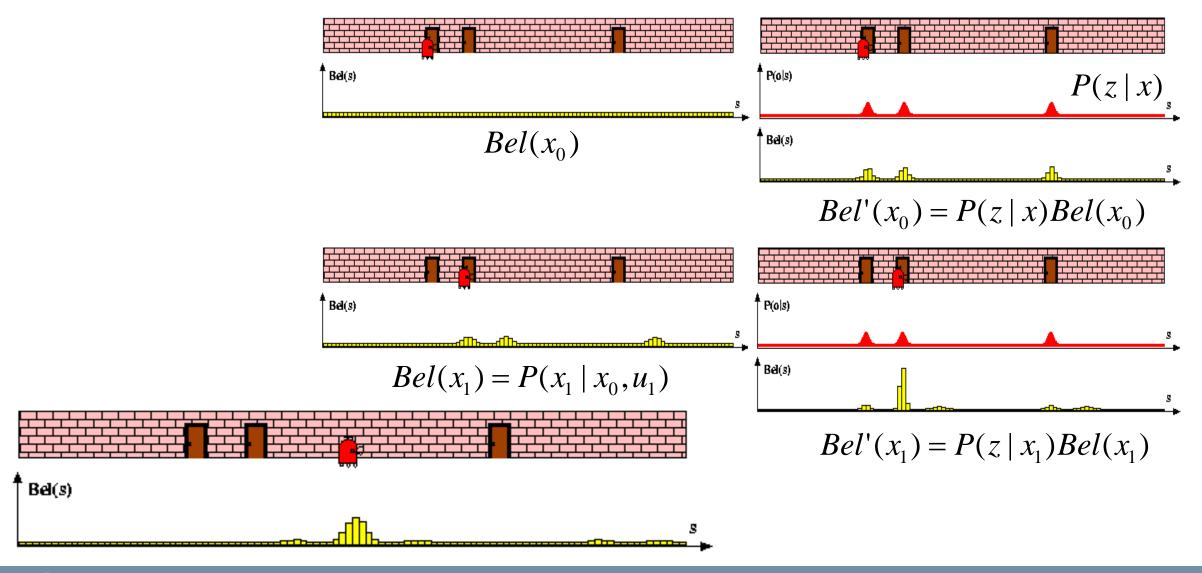
Discrete filters

- Kalman filters
- Sigma-point filters
- Particle filters
- •

Piecewise Constant Approximation

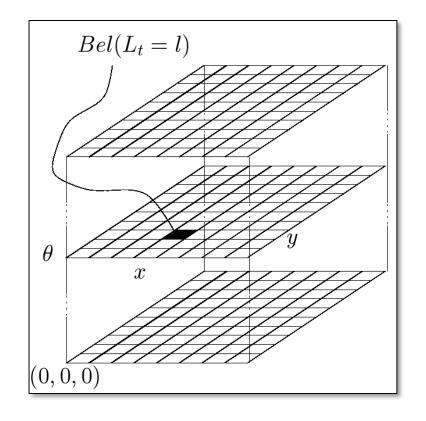


Piecewise Constant Approximation



Discrete Bayesian Filter Algorithm

```
Algorithm Discrete_Bayes_filter( Bel(x),d):
     h=0
     If d is a perceptual data item z then
        For all x do
              Bel'(x) = P(z \mid x)Bel(x)
             \eta = \eta + Bel'(x)
        For all x do
             Bel'(x) = \eta^{-1}Bel'(x)
     Else if d is an action data item u then
        For all x do
             Bel'(x) = \sum P(x \mid u, x') Bel(x')
     Return Bel'(x)
```



Tis and Tricks

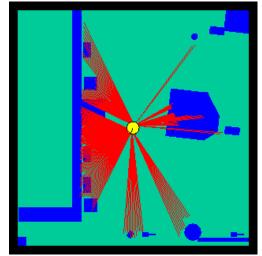
Belief update upon sensory input and normalization iterates over all cells

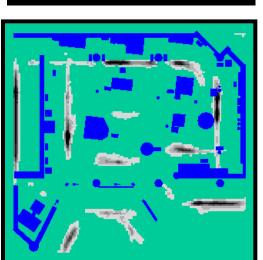
- When the belief is peaked (e.g., during position tracking), avoid updating irrelevant parts.
- Do not update entire sub-spaces of the state space and monitor whether the robot is de-localized or not by considering likelihood of observations given the active components

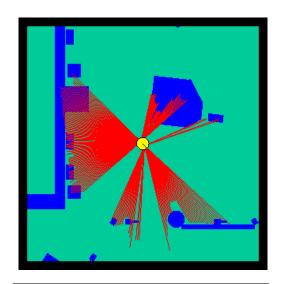
To update the belief upon robot motions, assumes a bounded Gaussian model to reduce the update from $O(n^2)$ to O(n)

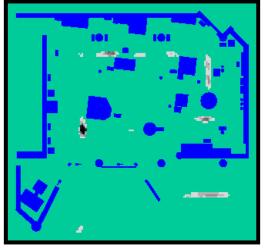
- Update by shifting the data in the grid according to measured motion
- Then convolve the grid using a Gaussian Kernel.

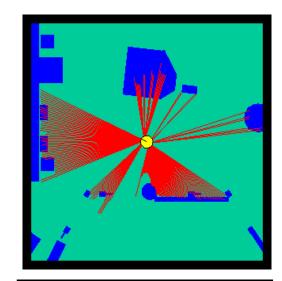
Grid Based Localization

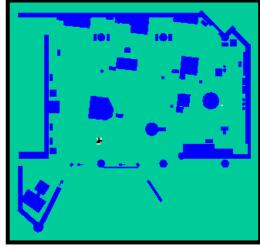












Bayes Filter Algorithm

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

Algorithm Bayes_filter(Bel(x), d):

$$\eta=0$$

If *d* is a perceptual data item *z* then

For all x do

$$Bel'(x) = P(z \mid x)Bel(x)$$

$$\eta = \eta + Bel'(x)$$

For all x do

$$Bel'(x) = \eta^{-1}Bel'(x)$$

Else if d is an action data item u then

For all x do

$$Bel'(x) = \int P(x \mid u, x') Bel(x') dx'$$

Return *Bel'(x)*

How to represent such belief?

Based on such representation:

Discrete filters

- Kalman filters
- Sigma-point filters
- Particle filters
- •

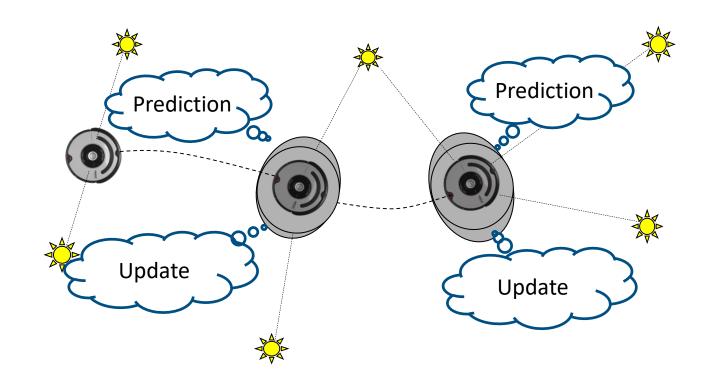
Bayes Filter Reminder

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

Prediction:
$$\overline{Bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Correction/Update: $Bel(x_t) = \eta p(z_t \mid x_t) Bel(x_t)$

Localization with Knowm Map



Bayes Filter Reminder

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

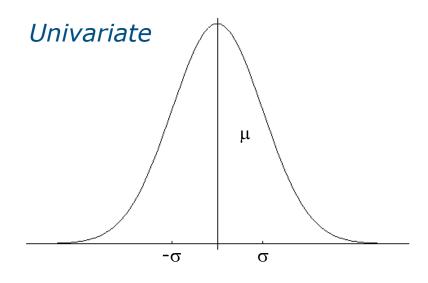
Prediction:
$$\overline{Bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Correction/Update: $Bel(x_t) = \eta p(z_t \mid x_t) Bel(x_t)$

Can we compute the integrals (η is an integral too) in closed form for continuos distributions?

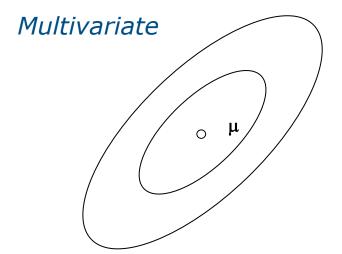
Is there any continuous distribution for which this is possible?

Gaussian Distribution



$$p(x) \sim N(\mu, \sigma^2)$$

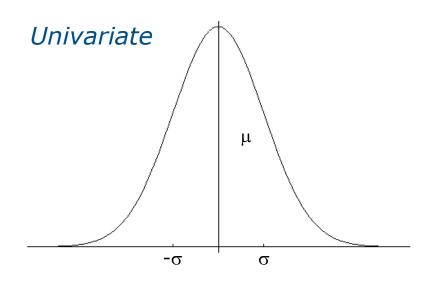
$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$



$$p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})}$$

Properties of Gaussian Distribution



$$p(x) \sim N(\mu, \sigma^2)$$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

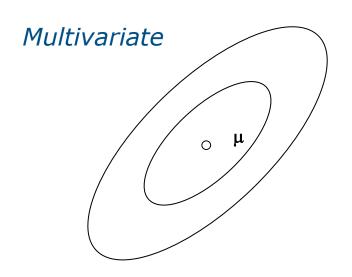
$$X \sim N(\mu, \sigma^2)$$

$$Y = aX + b$$

$$\Rightarrow Y \sim N(a\mu + b, a^2 \sigma^2)$$

$$\begin{vmatrix}
X_{1} \sim N(\mu_{1}, \sigma_{1}^{2}) \\
X_{2} \sim N(\mu_{2}, \sigma_{2}^{2})
\end{vmatrix} \Rightarrow p(X_{1}) \cdot p(X_{2}) \sim N\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}} \mu_{1} + \frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}} \mu_{2}, \frac{1}{\sigma_{1}^{-2} + \sigma_{2}^{-2}}\right)$$

Properties of Gaussian Distribution



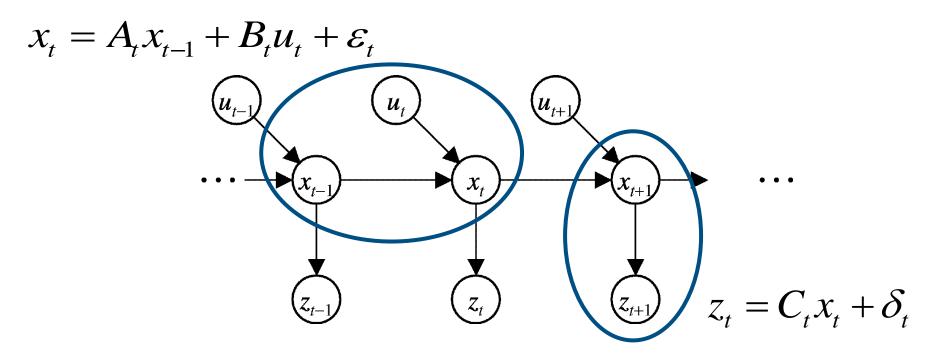
$$p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu})}$$

$$\left. \begin{array}{l} X \sim N(\mu, \Sigma) \\ Y = AX + B \end{array} \right\} \quad \Rightarrow \quad Y \sim N(A\mu + B, A\Sigma A^{T})$$

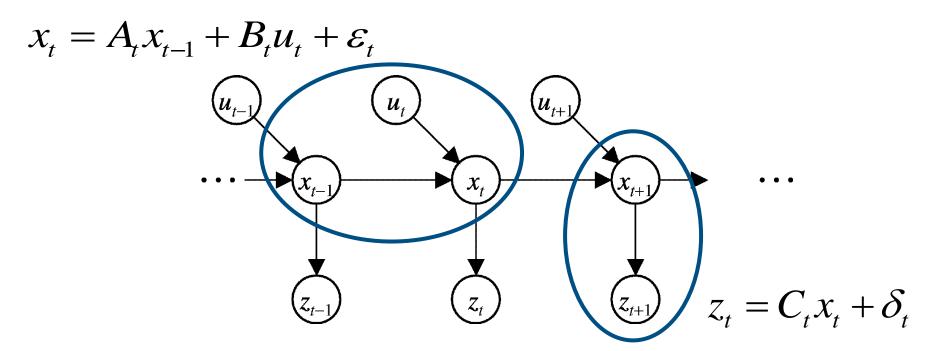
$$\frac{X_{1} \sim N(\mu_{1}, \Sigma_{1})}{X_{2} \sim N(\mu_{2}, \Sigma_{2})} \Rightarrow p(X_{1}) \cdot p(X_{2}) \sim N \left(\frac{\Sigma_{2}}{\Sigma_{1} + \Sigma_{2}} \mu_{1} + \frac{\Sigma_{1}}{\Sigma_{1} + \Sigma_{2}} \mu_{2}, \frac{1}{\Sigma_{1}^{-1} + \Sigma_{2}^{-1}} \right)$$

Discrete Time Kalman Filter



- A_t (n x n) describes how state evolves from t to t-1 w/o controls or noise
- B_t (n x l) describes how control u_t changes the state from t to t-1
- C_t (k x n) describes how to map the state x_t to an observation z_t
- $\mathcal{E}_t \, \delta_t$ random variables representing process and measurement noise assumed independent and normally distributed with covariance R_t and Q_t respectively.

Linear Gaussian Systems



Initial belief is normally distributed: $Bel(x_0) = N(x_0; \mu_0, \Sigma_0)$

Dynamics are linear function of state and control plus additive noise:

$$x_{t} = A_{t}x_{t-1} + B_{t}u_{t} + \varepsilon_{t} \implies p(x_{t} \mid u_{t}, x_{t-1}) = N(x_{t}; A_{t}x_{t-1} + B_{t}u_{t}, R_{t})$$

Observations are linear function of state plus additive noise:

$$z_t = C_t x_t + \delta_t \qquad \Rightarrow \qquad p(z_t \mid x_t) = N(z_t; C_t x_t, Q_t)$$

Linear Gaussian System: Prediction

Prediction:
$$\overline{Bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \cdot Bel(x_{t-1}) dx_{t-1}$$
$$\sim N(x_t; A_t x_{t-1} + B_t u_t, R_t) \sim N(x_{t-1}; \mu_{t-1}, \Sigma_{t-1})$$

$$\overline{Bel}(x_t) = \eta \int \exp\left\{-\frac{1}{2}(x_t - A_t x_{t-1} - B_t u_t)^T R_t^{-1}(x_t - A_t x_{t-1} - B_t u_t)\right\}$$

$$\exp\left\{-\frac{1}{2}(x_{t-1} - \mu_{t-1})^T \Sigma_{t-1}^{-1}(x_{t-1} - \mu_{t-1})\right\} dx_{t-1}$$

$$\overline{Bel}(x_t) = \begin{cases} \overline{\mu}_t = A_t \mu_{t-1} + B_t \mu_t \\ \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t \end{cases}$$
 Closed form prediction step

Linear Gaussian System: Observation

Update:
$$Bel(x_t) = \eta \quad p(z_t \mid x_t)$$
 $\cdot \quad \overline{bel}(x_t)$ $\sim N(z_t; C_t x_t, Q_t)$ $\sim N(x_t; \overline{\mu}_t, \overline{\Sigma}_t)$

$$Bel(x_{t}) = \eta \exp \left\{ -\frac{1}{2} (z_{t} - C_{t} x_{t})^{T} Q_{t}^{-1} (z_{t} - C_{t} x_{t}) \right\} \exp \left\{ -\frac{1}{2} (x_{t} - \overline{\mu}_{t})^{T} \overline{\Sigma}_{t}^{-1} (x_{t} - \overline{\mu}_{t}) \right\}$$

$$Bel(x_t) = \begin{cases} \mu_t = \overline{\mu}_t + K_t(z_t - C_t \overline{\mu}_t) \\ \Sigma_t = (I - K_t C_t) \overline{\Sigma}_t \end{cases} \quad \text{with} \quad K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$$

Kalman Filter Algorithm

Algorithm Kalman_filter(μ_{t-1} , Σ_{t-1} , u_t , z_t):

Prediction:

$$\mu_{t} = A_{t}\mu_{t-1} + B_{t}\mu_{t}$$

$$\overline{\Sigma}_{t} = A_{t}\Sigma_{t-1}A_{t}^{T} + R_{t}$$

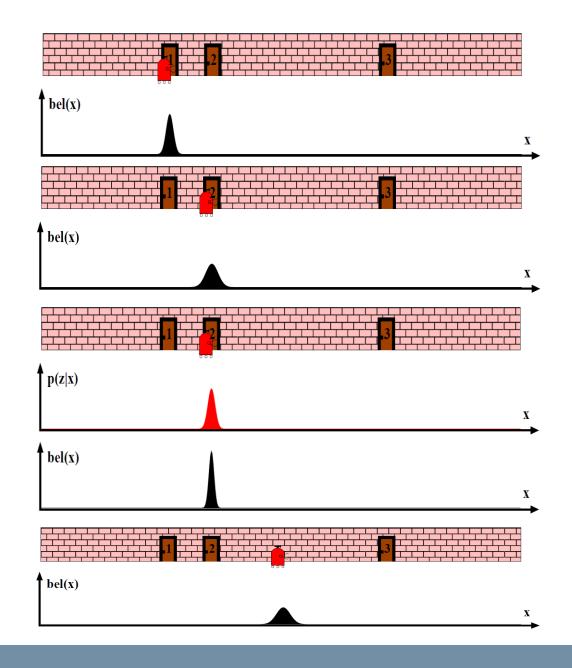
Correction:

$$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$

$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

Return μ_t , Σ_t



Kalman Filter Algorithm

Algorithm Kalman_filter(μ_{t-1} , Σ_{t-1} , u_t , z_t):

Prediction:

$$\overline{\mu}_{t} = A_{t}\mu_{t-1} + B_{t}\mu_{t}$$

$$\overline{\Sigma}_{t} = A_{t}\Sigma_{t-1}A_{t}^{T} + R_{t}$$

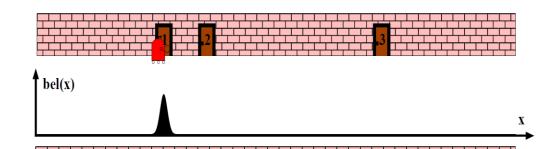
Correction:

$$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$

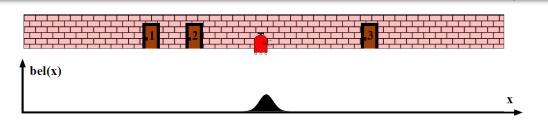
$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$

$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

Return μ_t , Σ_t



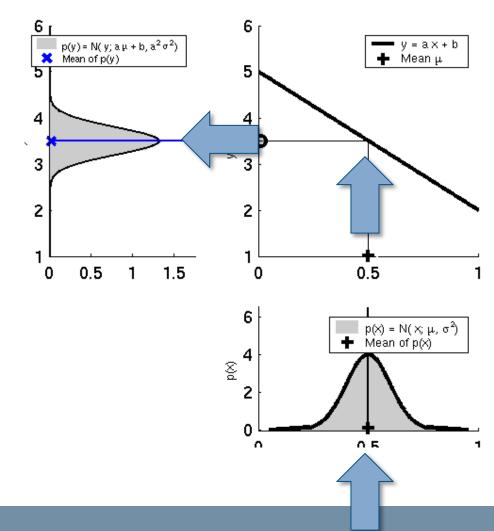
- Polynomial in measurement dimensionality k and state dimensionality n: O(k2.376 + n2)
- Optimal for linear Gaussian systems ©
- Most robotics systems are nonlinear ☺
- It represents unimodal disributions ⊗



How to Deal with Non Linear Dynamic Systems?

Gaussian noise in linear systems

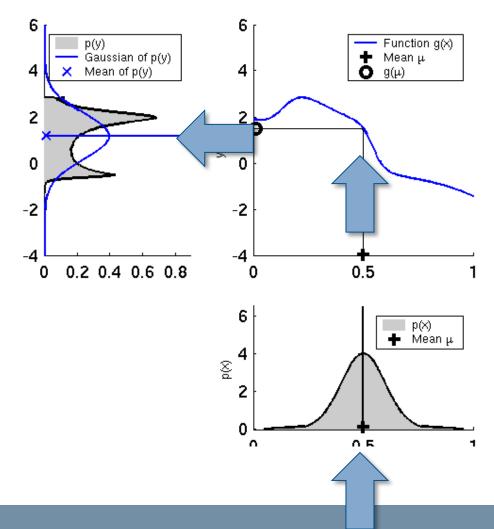
$$x_{t} = A_{t}x_{t-1} + B_{t}u_{t} + \varepsilon_{t}$$
$$z_{t} = C_{t}x_{t} + \delta_{t}$$



How to Deal with Non Linear Dynamic Systems?

Gaussian noise in non-linear systems

$$x_{t} = g(u_{t}, x_{t-1})$$
$$z_{t} = h(x_{t})$$



Gaussian noise in non-linear systems

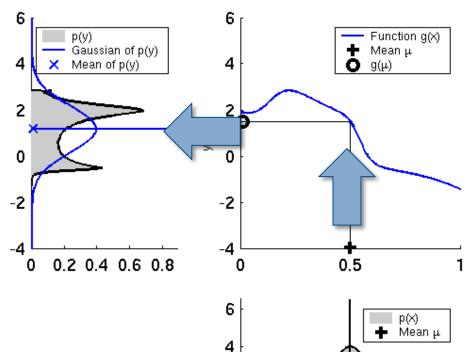
$$x_{t} = g(u_{t}, x_{t-1})$$
$$z_{t} = h(x_{t})$$

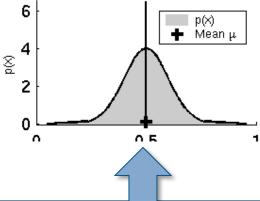
Prediction:

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + G_{t} (x_{t-1} - \mu_{t-1})$$

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$





Gaussian noise in non-linear systems

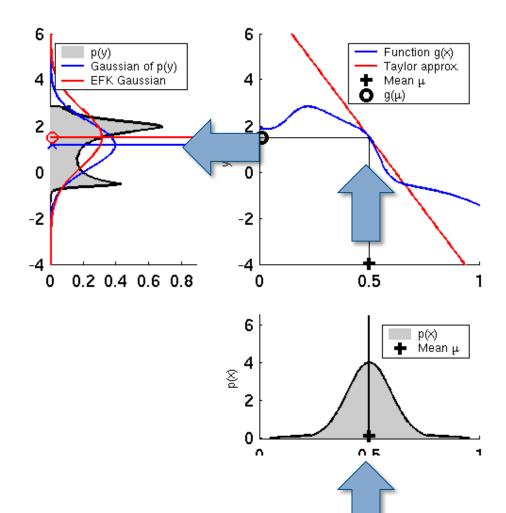
$$x_{t} = g(u_{t}, x_{t-1})$$
$$z_{t} = h(x_{t})$$

Prediction:

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + G_{t} (x_{t-1} - \mu_{t-1})$$

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$



Gaussian noise in non-linear systems

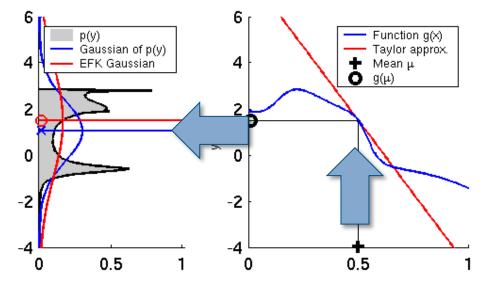
$$x_{t} = g(u_{t}, x_{t-1})$$
$$z_{t} = h(x_{t})$$

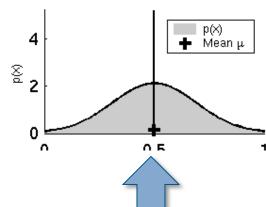
Prediction:

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + G_{t} (x_{t-1} - \mu_{t-1})$$

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$





Gaussian noise in non-linear systems

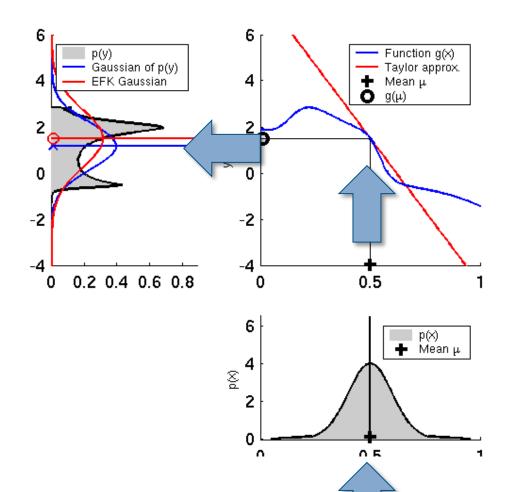
$$x_{t} = g(u_{t}, x_{t-1})$$
$$z_{t} = h(x_{t})$$

Prediction:

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + G_{t} (x_{t-1} - \mu_{t-1})$$

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$



Gaussian noise in non-linear systems

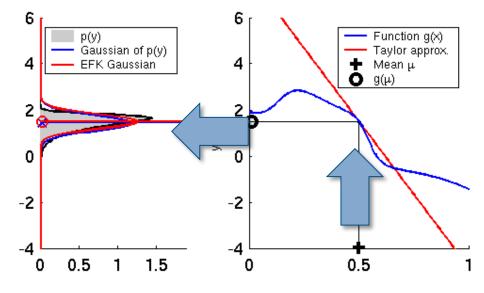
$$x_{t} = g(u_{t}, x_{t-1})$$
$$z_{t} = h(x_{t})$$

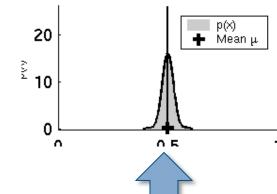
Prediction:

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + G_{t} (x_{t-1} - \mu_{t-1})$$

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$





EKF Algorithm

Extended_Kalman_filter(μ_{t-1} , Σ_{t-1} , u_t , z_t):

$$G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} \quad H_{t} = \frac{\partial h(\overline{\mu}_{t})}{\partial x_{t}}$$

Prediction:

$$\overline{\mu}_{t} = g(u_{t}, \mu_{t-1}) \qquad \qquad \overline{\mu}_{t} = A_{t}\mu_{t-1} + B_{t}u_{t}$$

$$\overline{\Sigma}_{t} = G_{t}\Sigma_{t-1}G_{t}^{T} + R_{t} \qquad \qquad \overline{\Sigma}_{t} = A_{t}\Sigma_{t-1}A_{t}^{T} + R_{t}$$

Correction:

$$K_{t} = \overline{\Sigma}_{t} H_{t}^{T} (H_{t} \overline{\Sigma}_{t} H_{t}^{T} + Q_{t})^{-1} \longleftarrow K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - h(\overline{\mu}_{t})) \longleftarrow \mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$

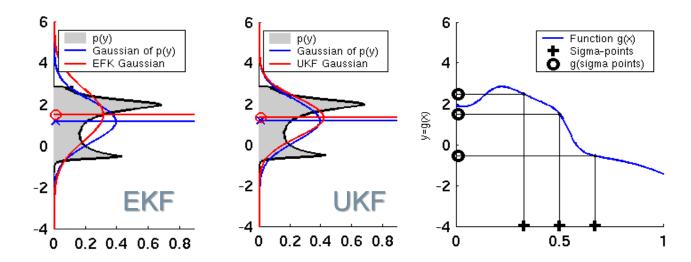
$$\Sigma_{t} = (I - K_{t} H_{t}) \overline{\Sigma}_{t} \longleftarrow \Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

Return μ_t , Σ_t

EKF and Friends

Extended Kalman Filter:

- Polynomial in measurement k and state n dimensionality: O(k^{2.376} + n²)
- Not optimal and can diverge if nonlinearities are large!
- Works surprisingly well even when all assumptions are violated!
- There are possible alternative like the Unscented Kalman Transform ...



Bayes Filter Algorithm

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

Algorithm Bayes_filter(Bel(x), d):

$$\eta = 0$$

If *d* is a perceptual data item *z* then

For all x do

$$Bel'(x) = P(z \mid x)Bel(x)$$

$$\eta = \eta + Bel'(x)$$

For all x do

$$Bel'(x) = \eta^{-1}Bel'(x)$$

Else if d is an action data item u then

For all x do

$$Bel'(x) = \int P(x \mid u, x') Bel(x') dx'$$

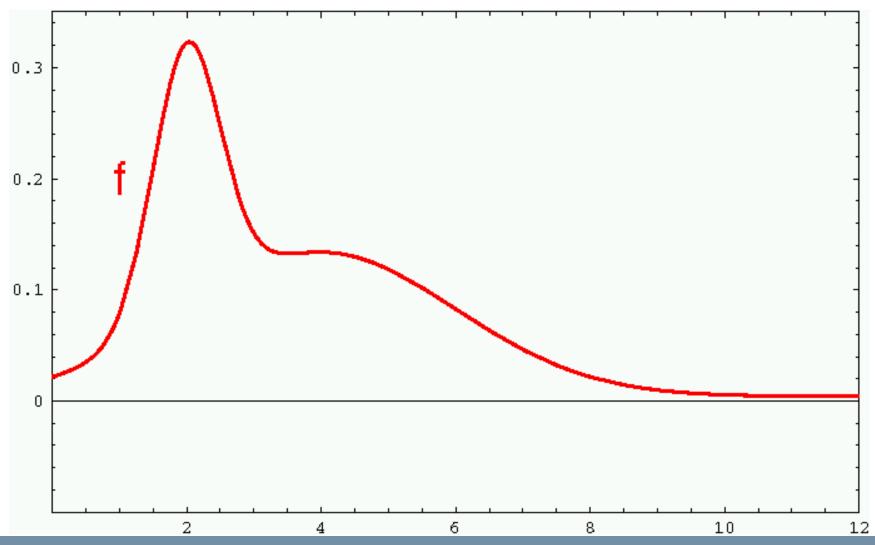
Return *Bel'(x)*

How to represent such belief?

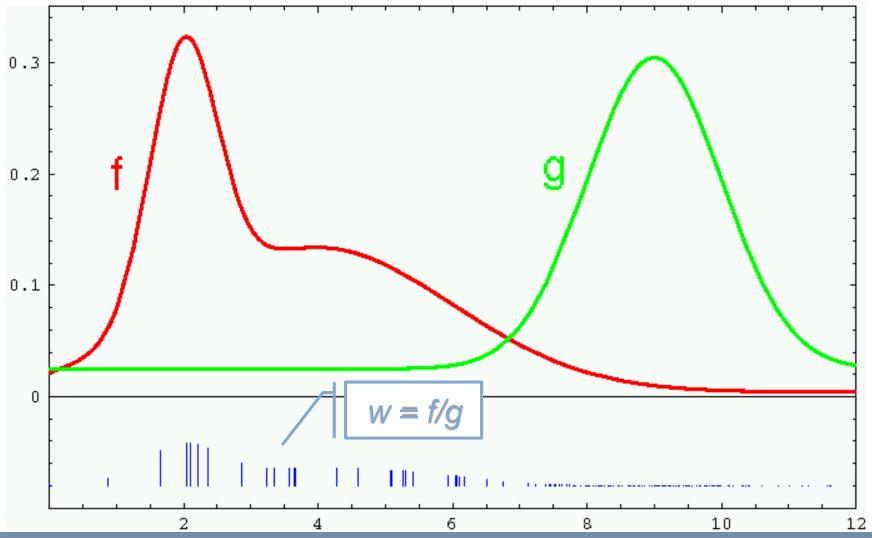
Based on such representation:

- Discrete filters
- Kalman filters
- Sigma-point filters
- Particle filters
- •

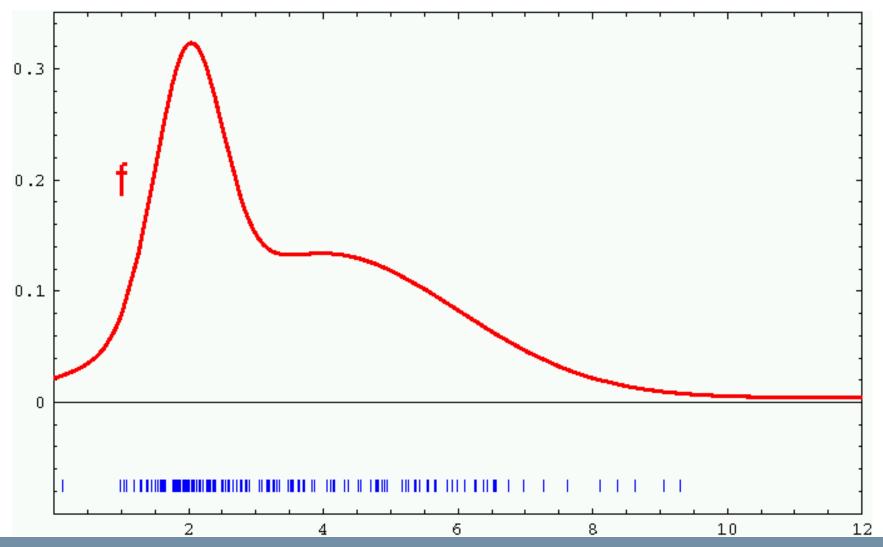
Importance Resampling



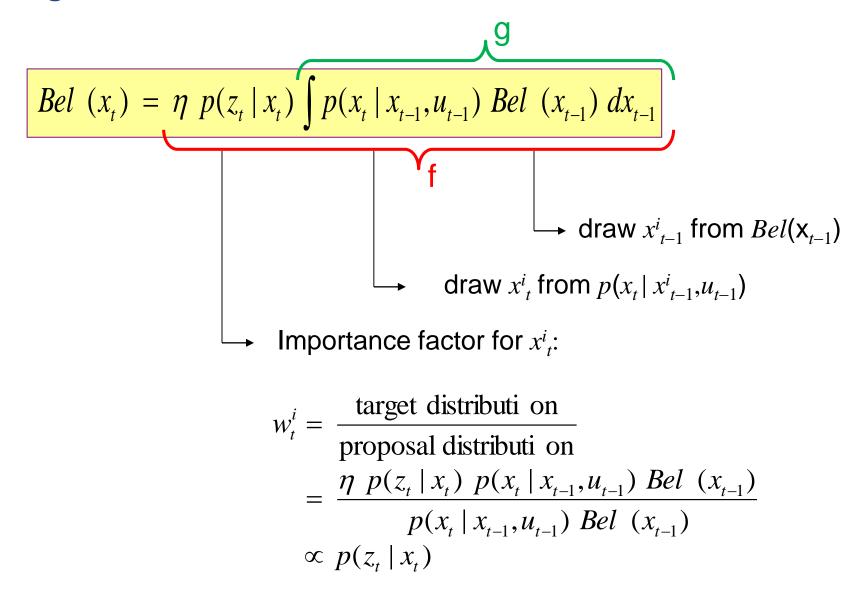
Importance Resampling



Importance Resampling (with smoothing)



Particle Filter Algorithm



Particle Filter Algorithm

Algorithm **particle_filter**(S_{t-1} , U_{t-1} , Z_t):

$$S_t = \emptyset, \quad \eta = 0$$

For
$$i = 1...n$$

Generate new samples

Sample index j(i) from the discrete distribution given by w_{t-1}

Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1}

$$w_t^i = p(z_t \mid x_t^i)$$

Compute importance weight

$$\eta = \eta + w_t^i$$

Update normalization factor

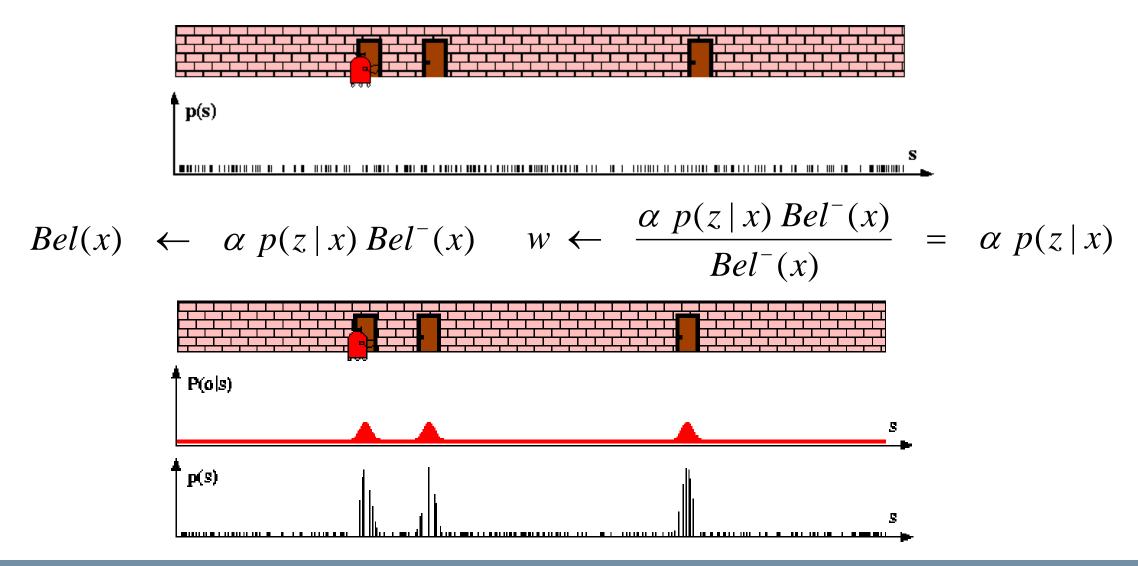
$$S_{t} = S_{t} \cup \{\langle x_{t}^{i}, w_{t}^{i} \rangle\}$$

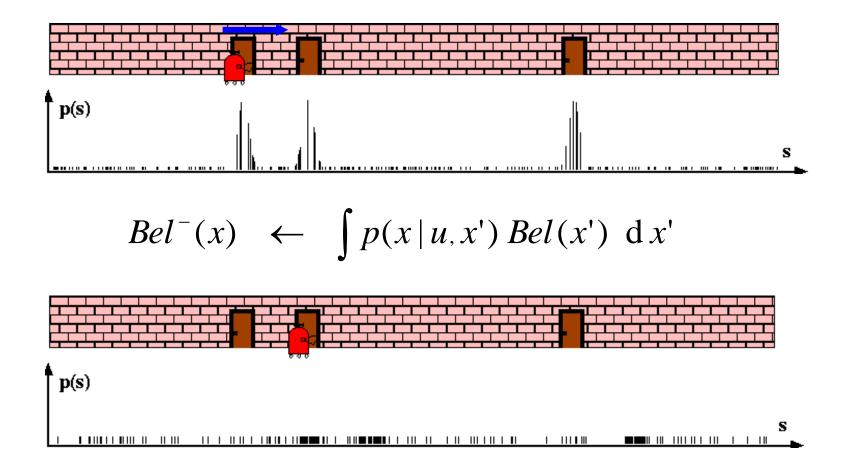
Insert

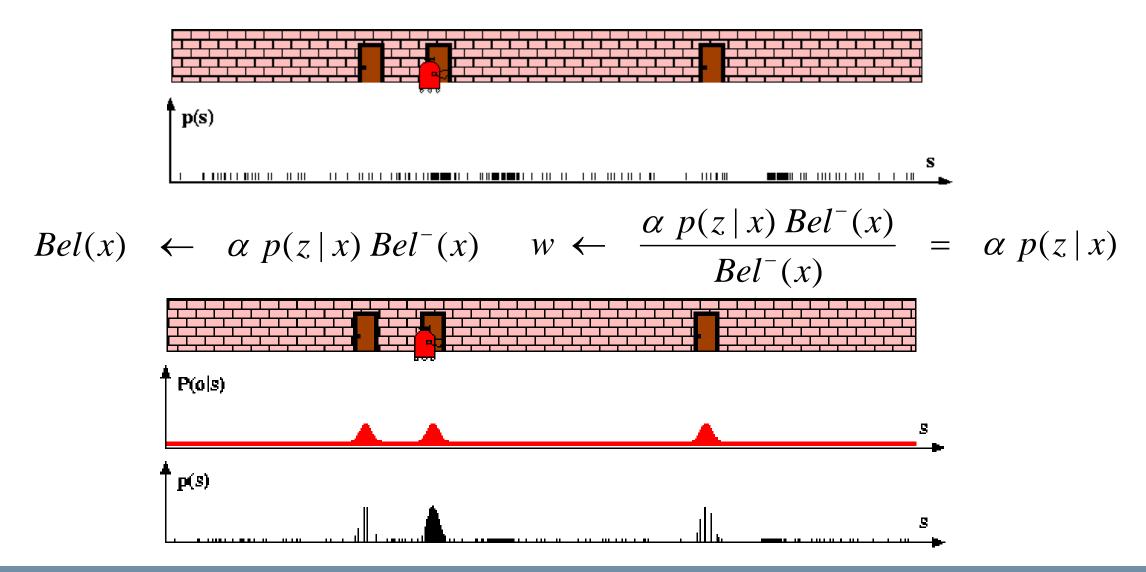
For i = 1...n

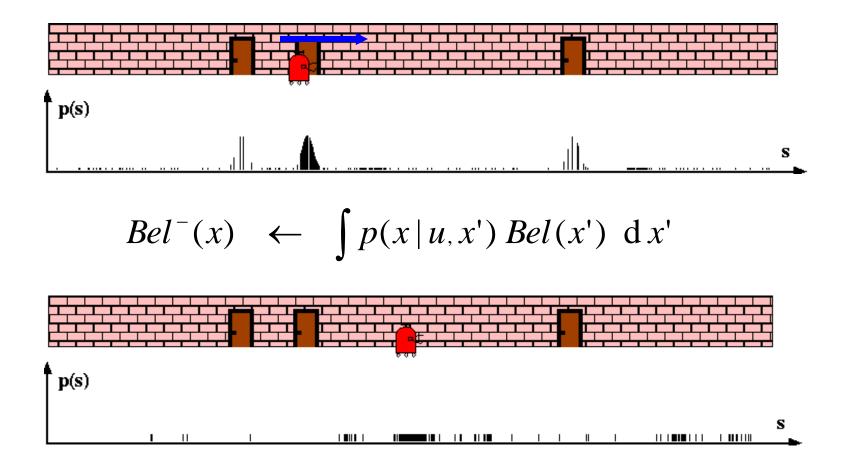
$$W_t^i = W_t^i / \eta$$

Normalize weights



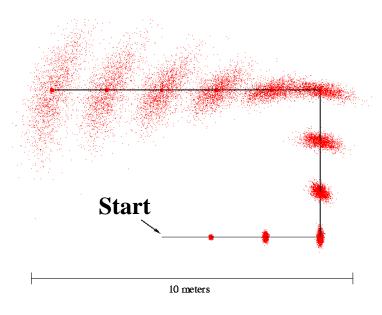




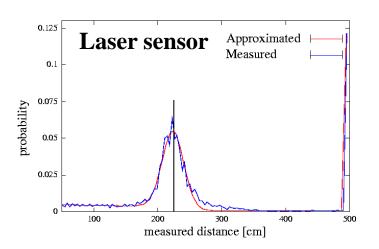


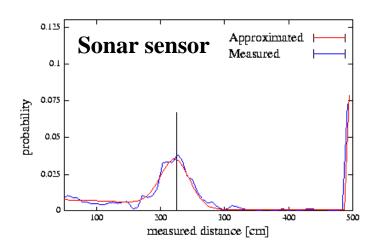
Monte Carlo Localization with Laser

Stochastic motion model

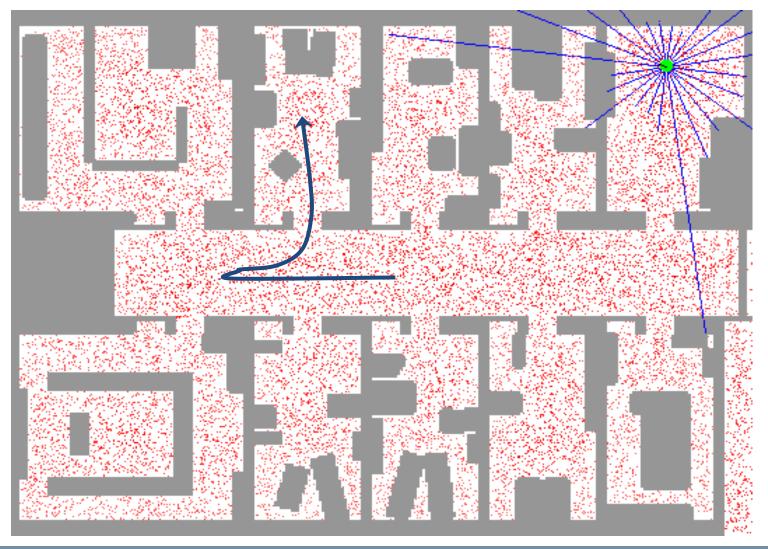


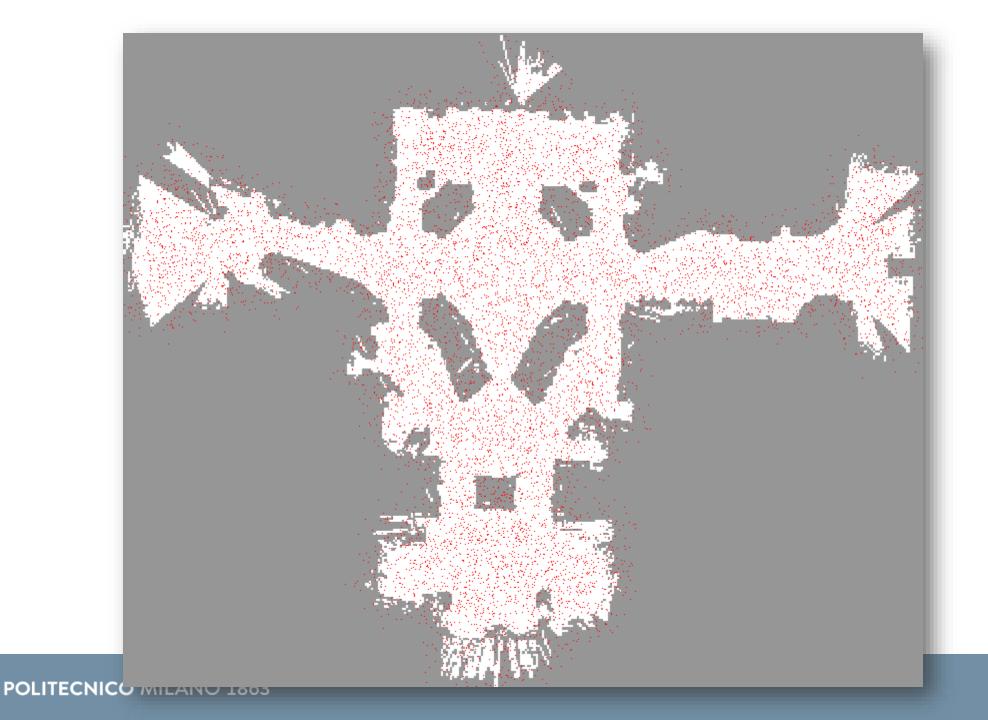
Proximity sensor model

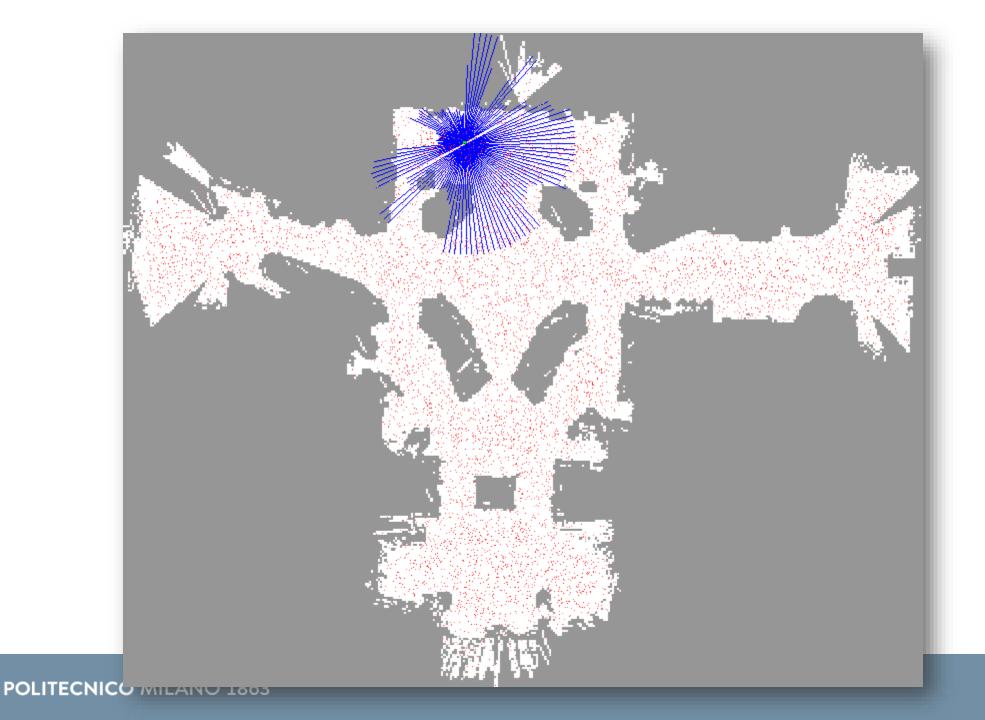


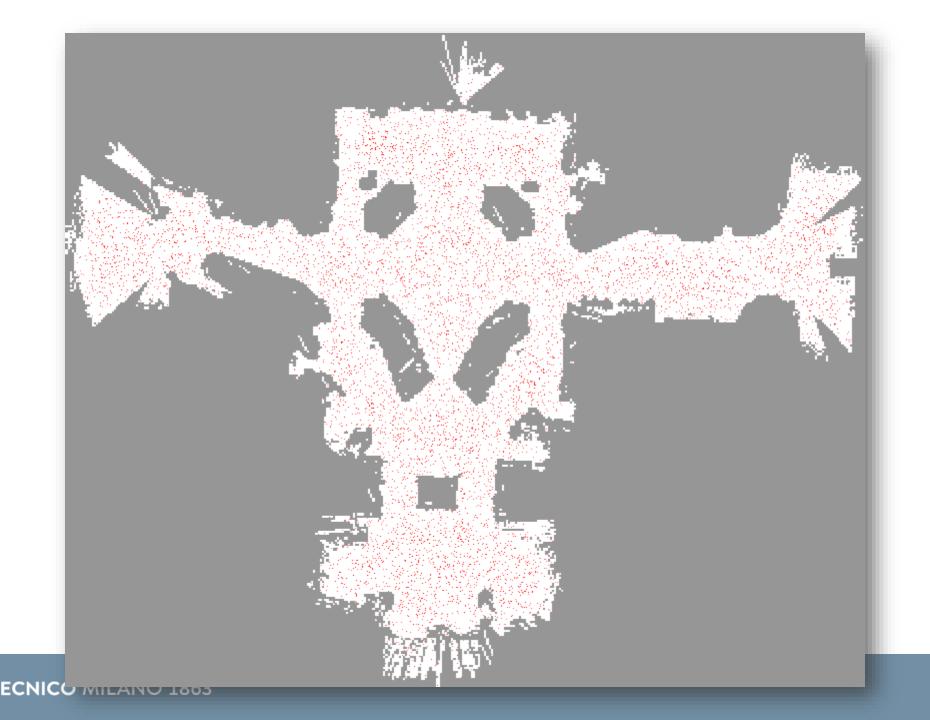


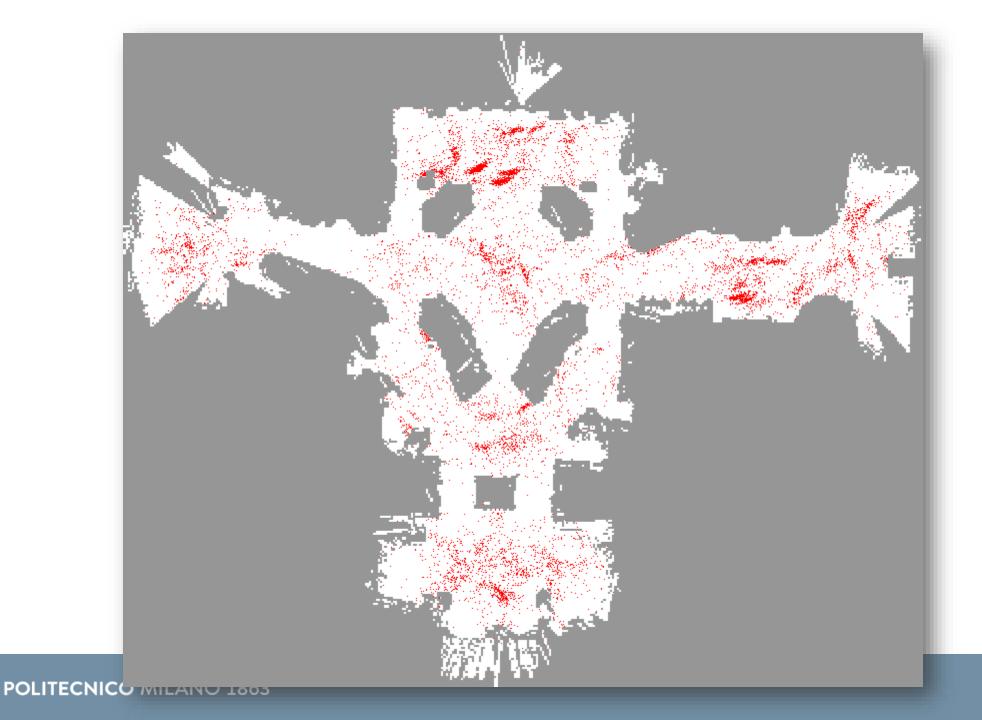
Sample-based Localization (sonar)

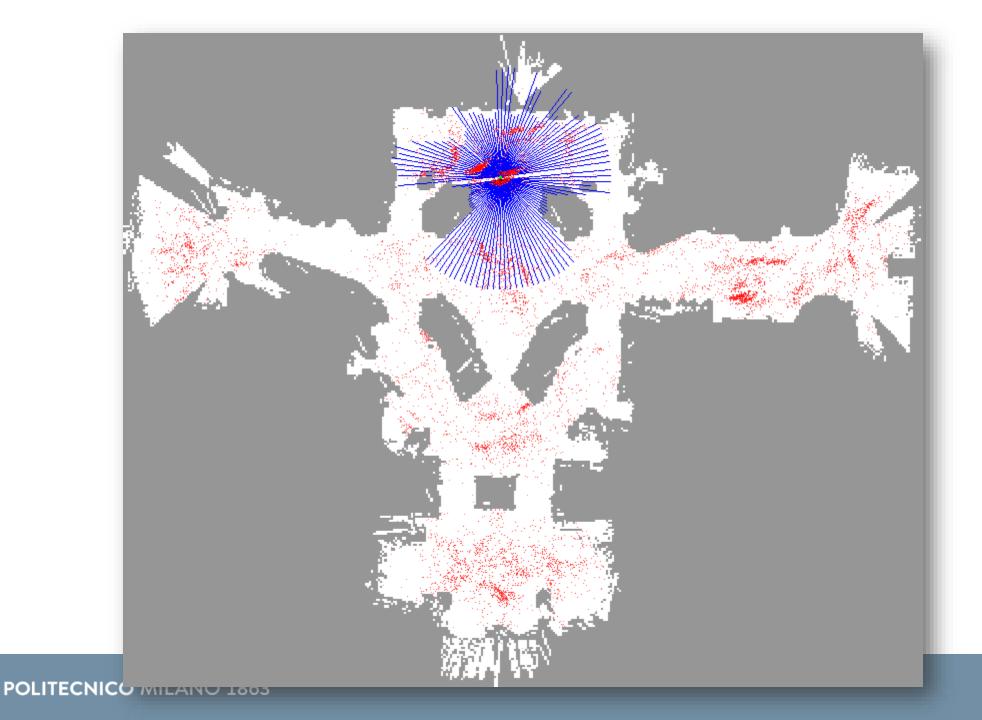


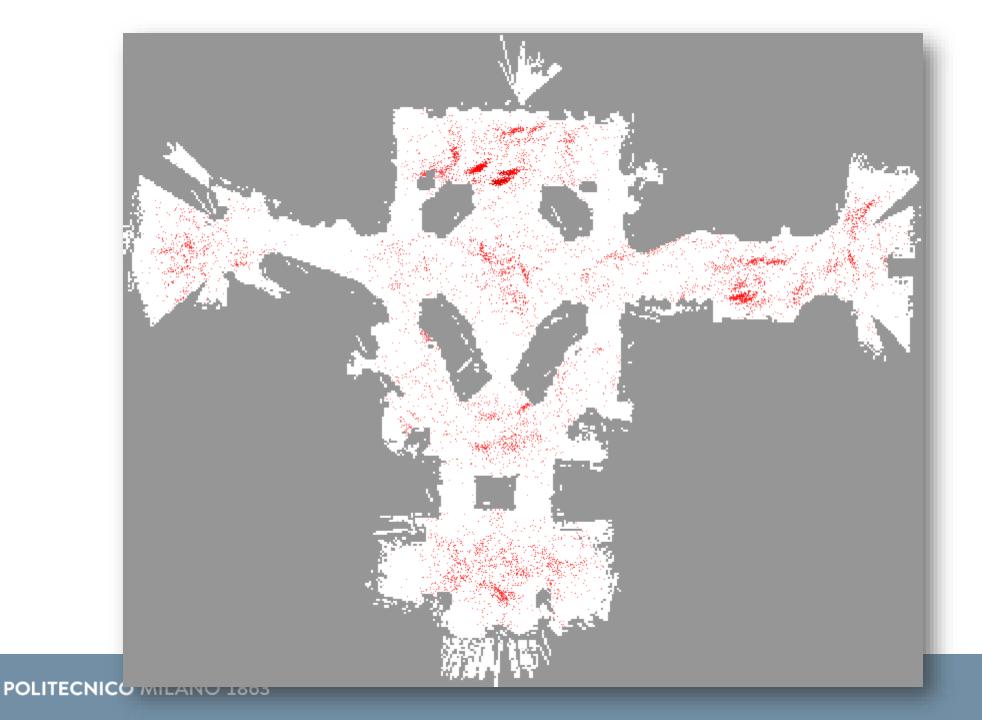


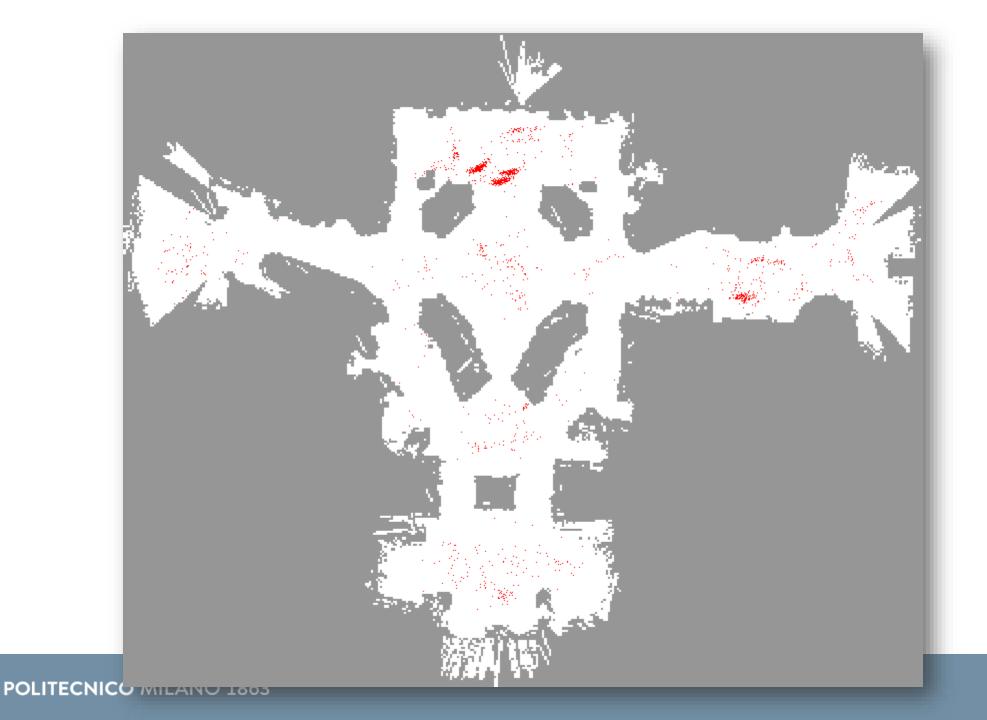


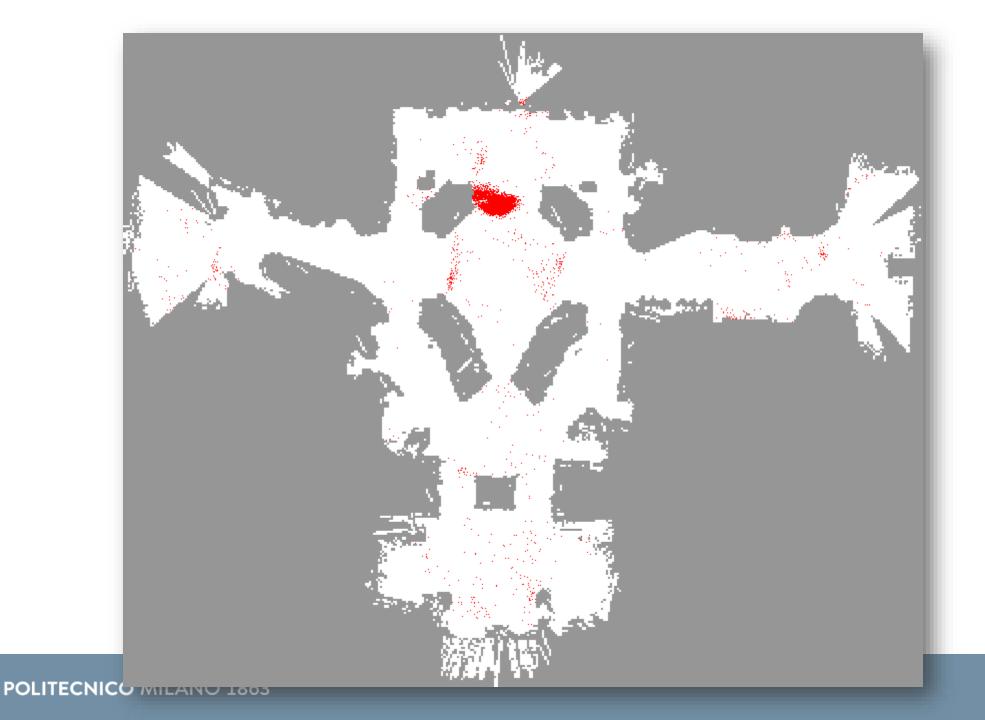


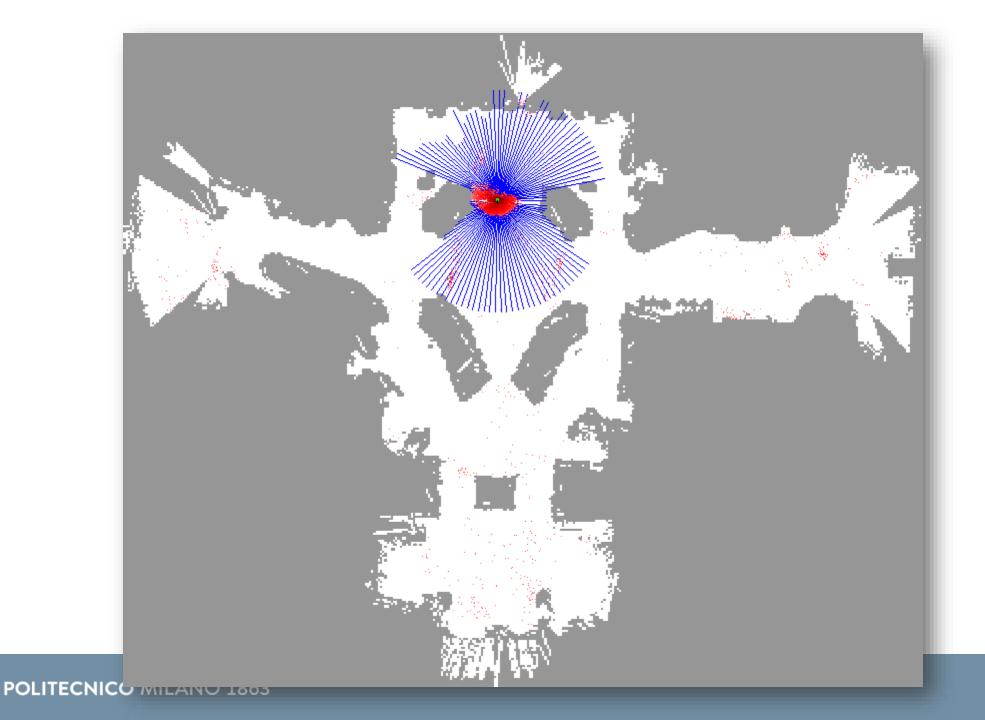


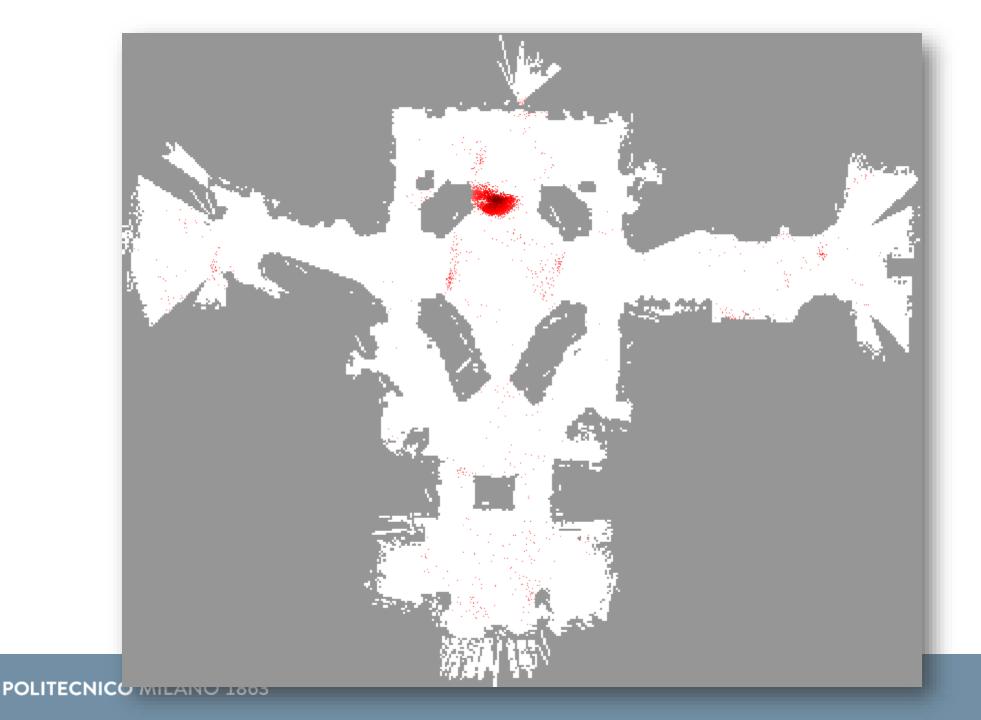


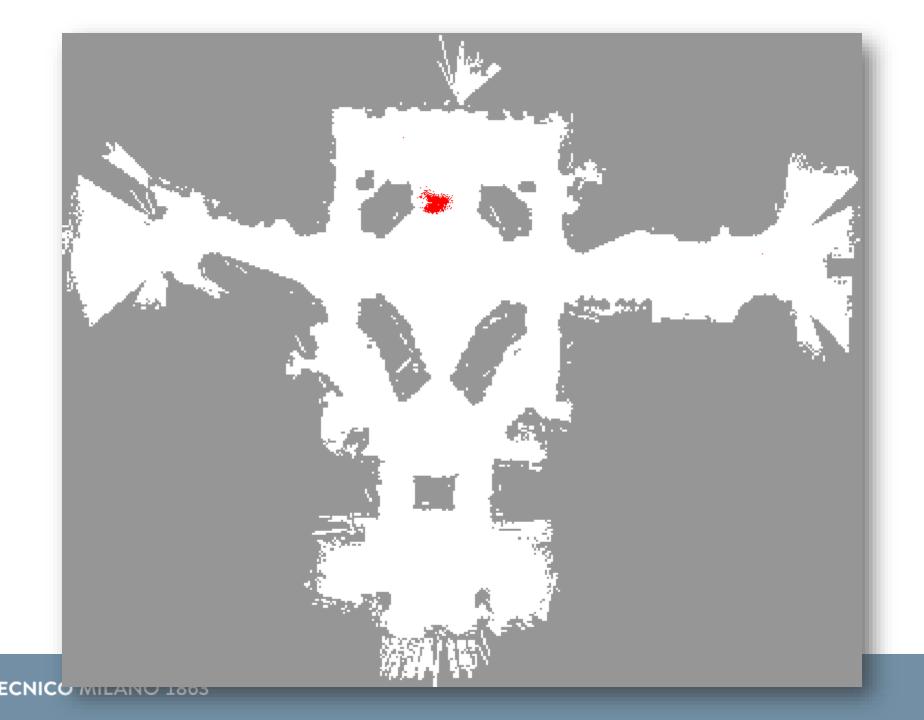


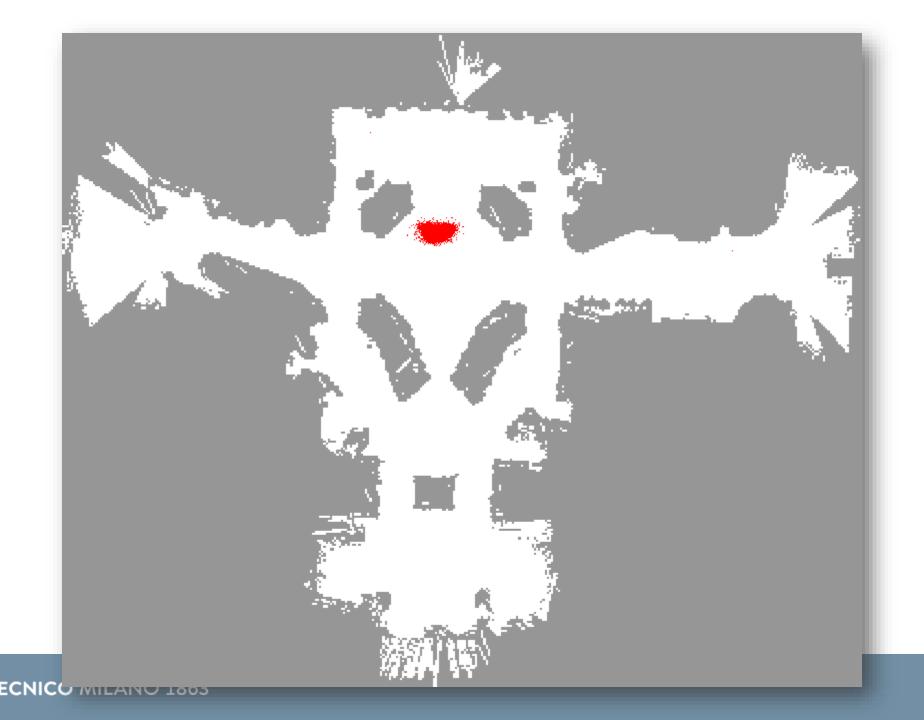


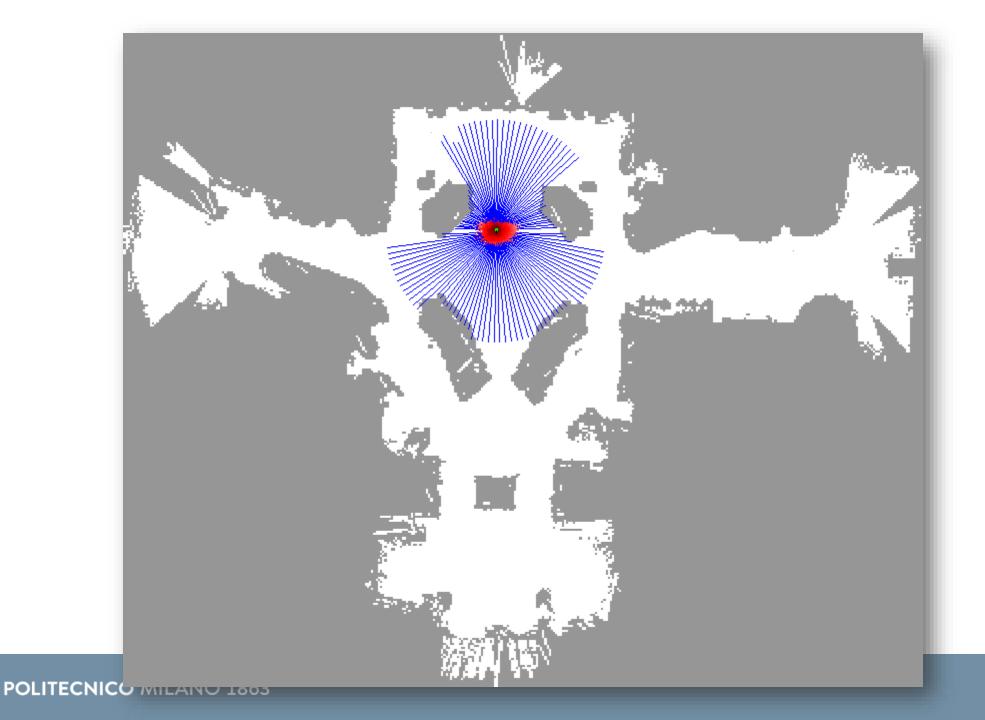


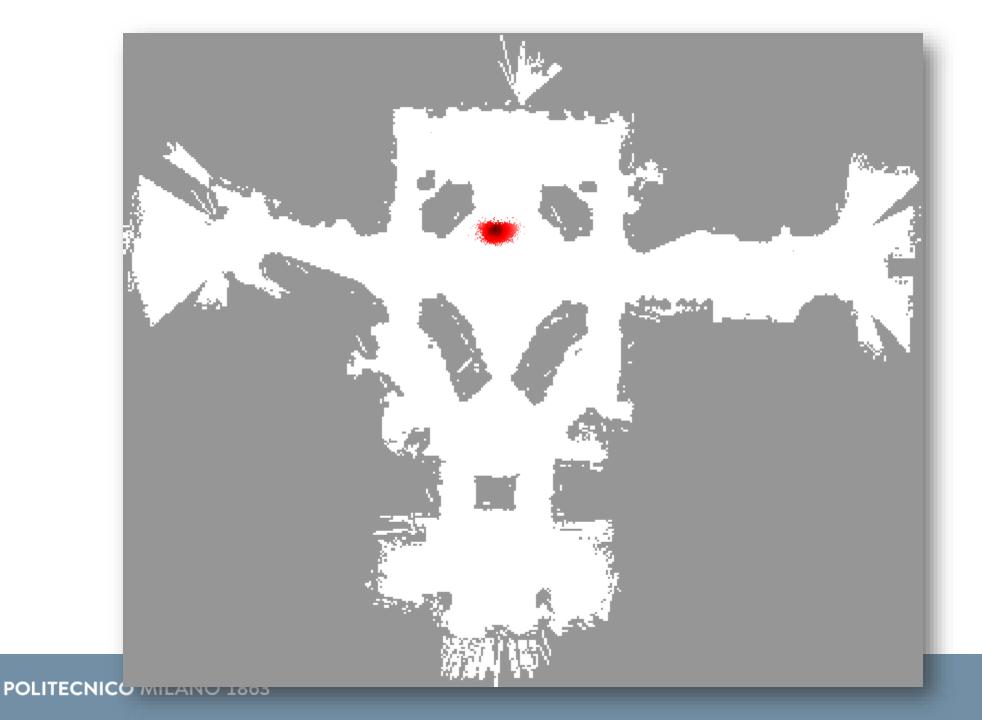


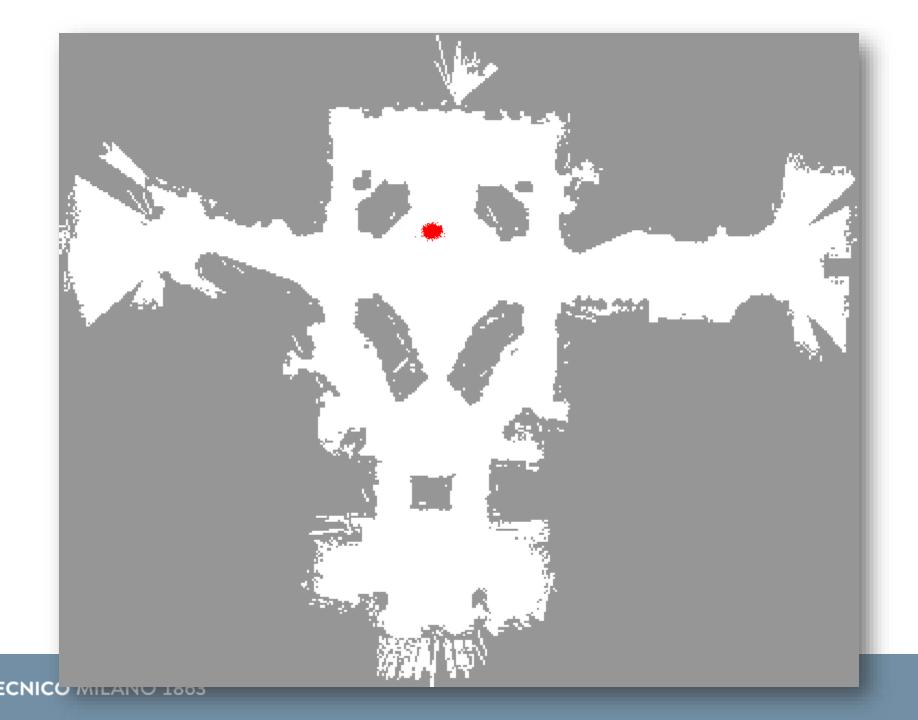


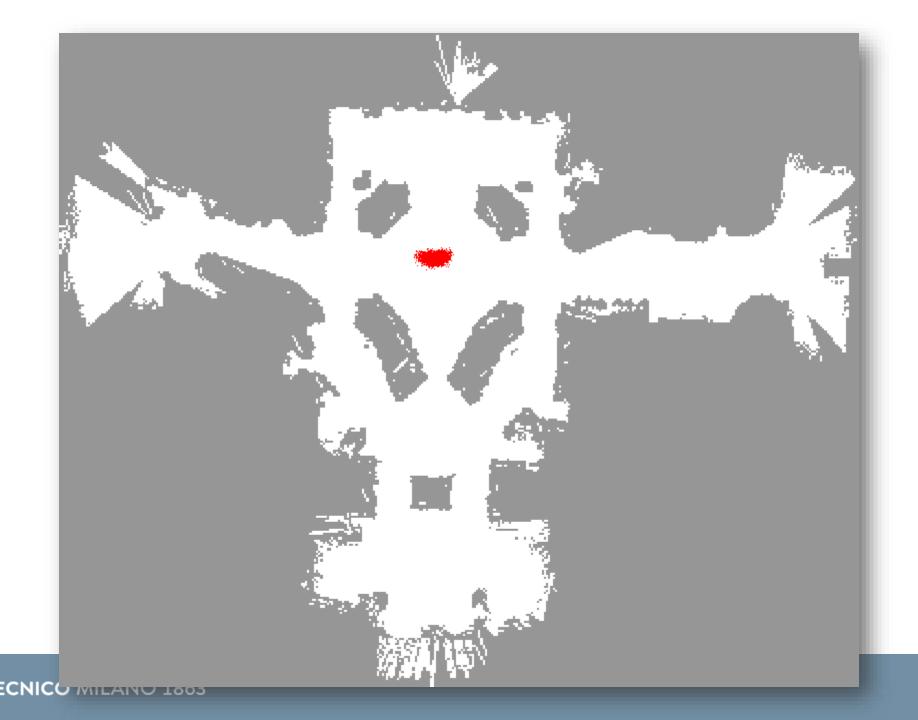


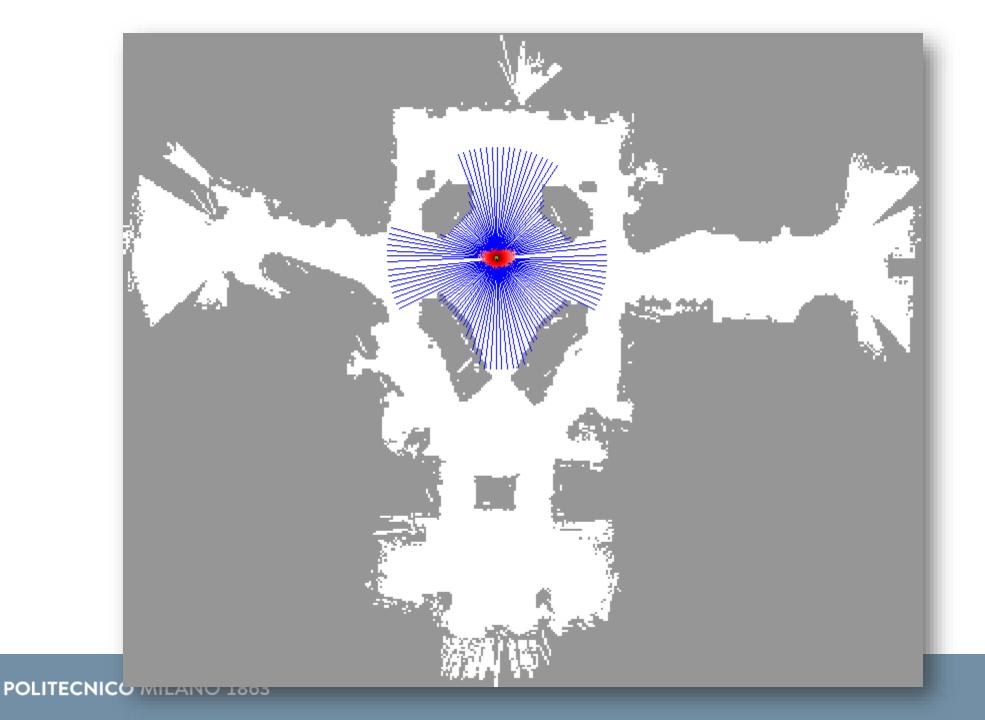


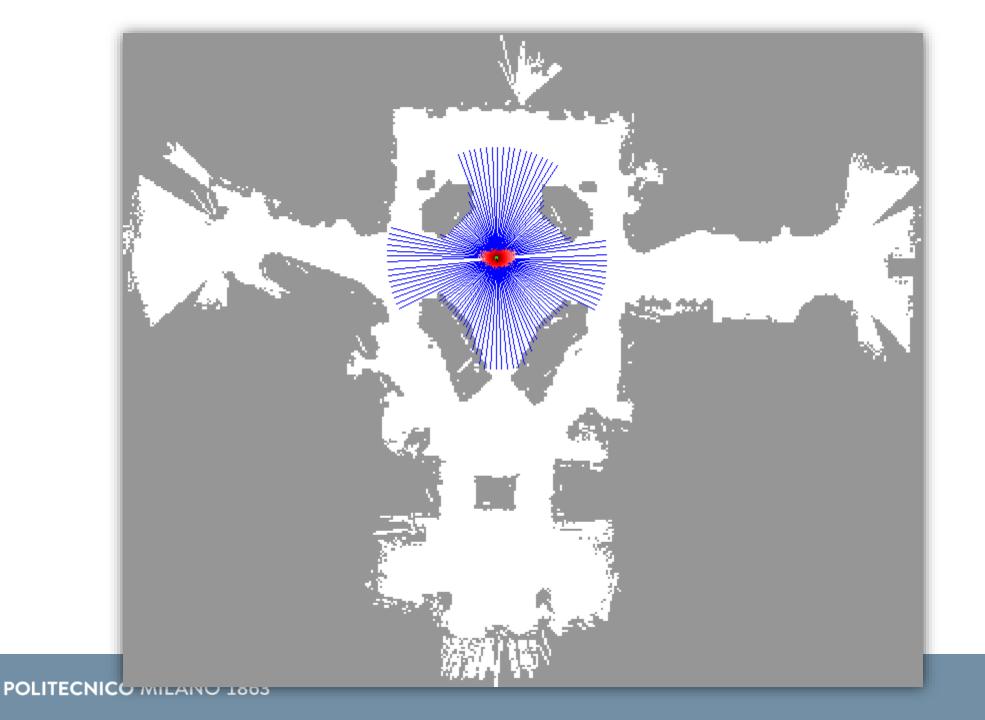




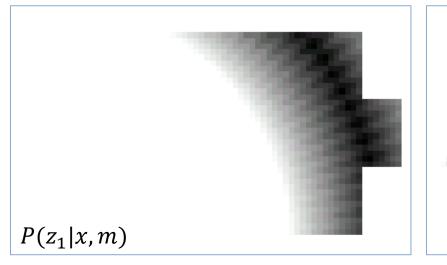


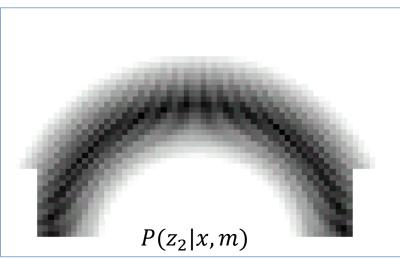


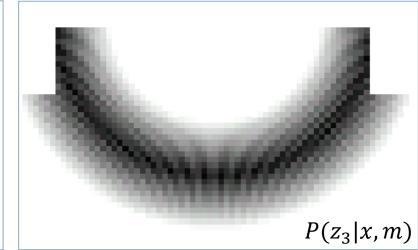


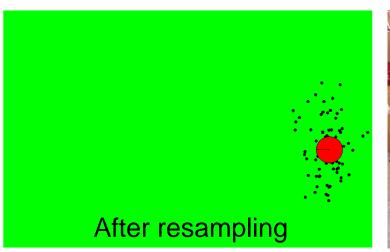


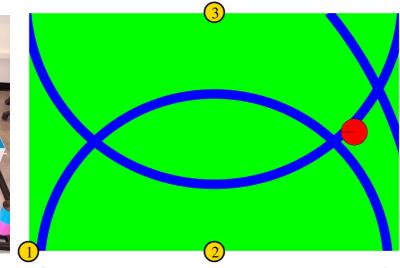
RoboCup Example



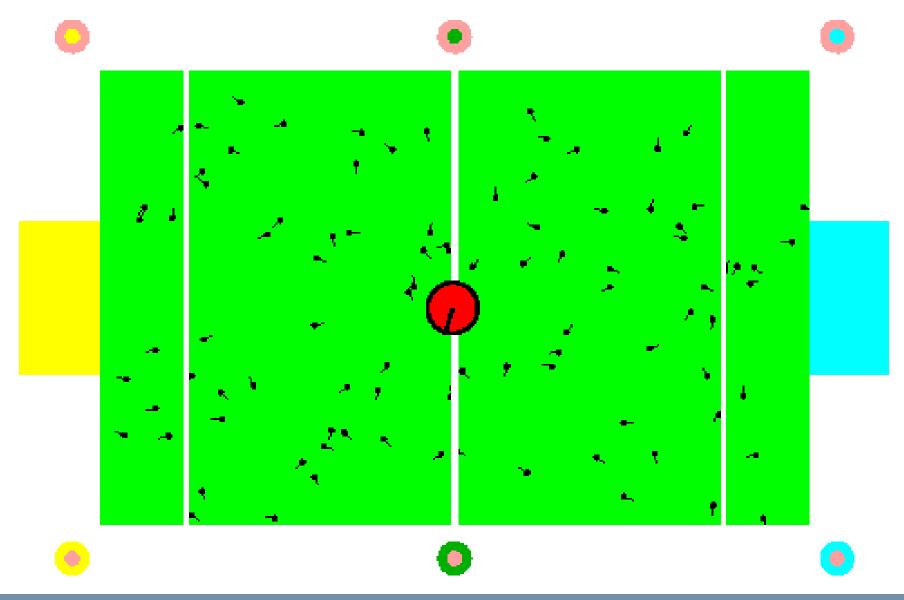








Localization for AIBO robots



Project Minerva

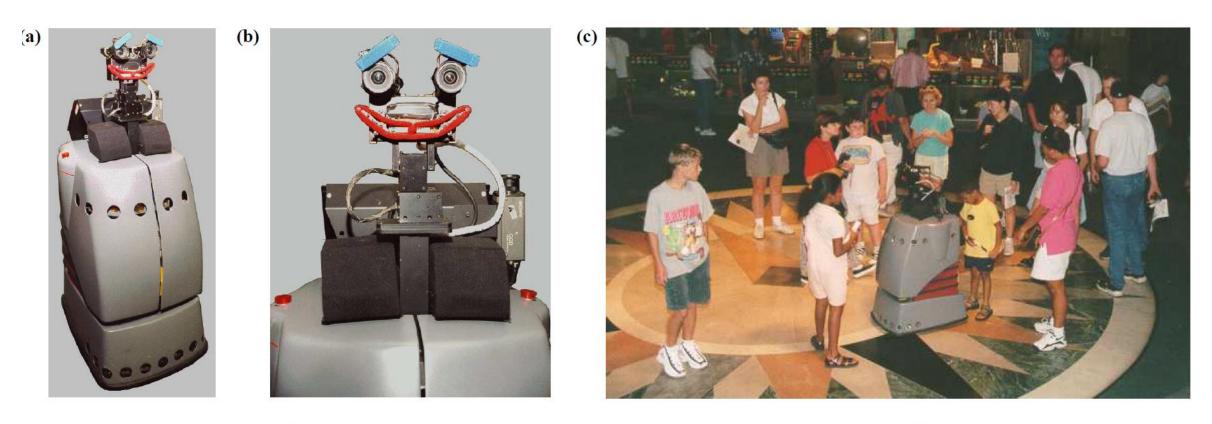
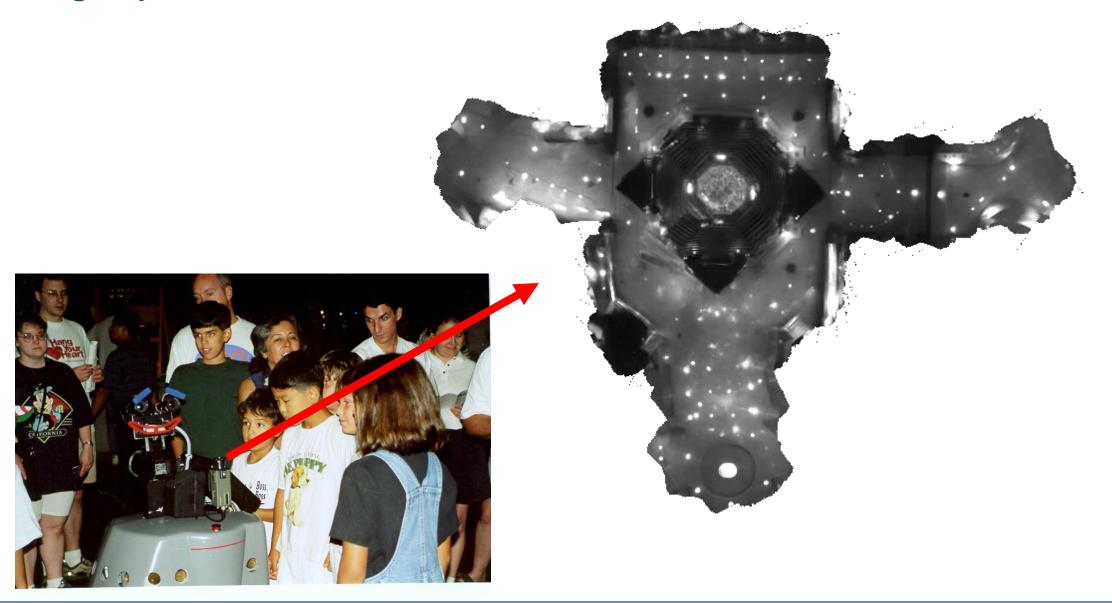
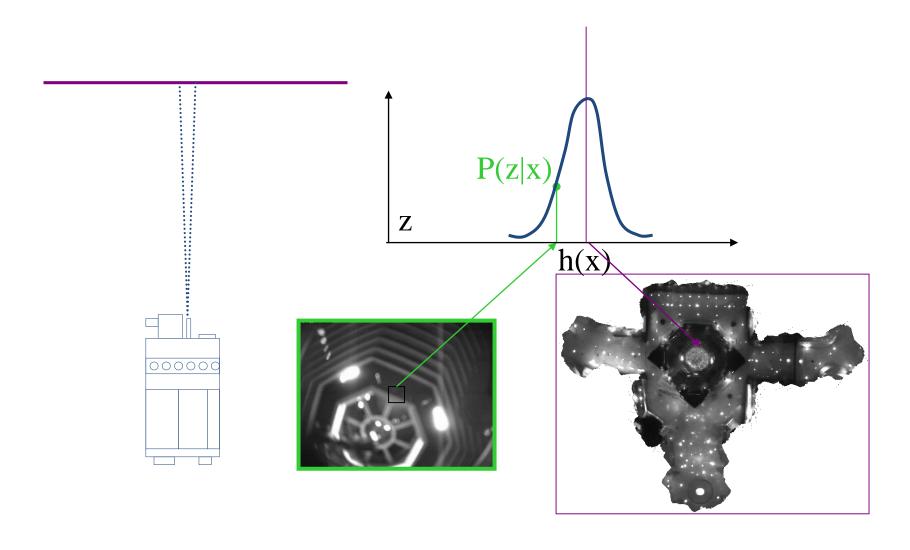


Figure 1: (a) Minerva. (b) Minerva's motorized face. (c) Minerva gives a tour in the Smithsonian's National Museum of American History.

Using Ceiling Maps for Localization



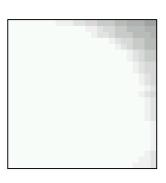
Vision-based Localization

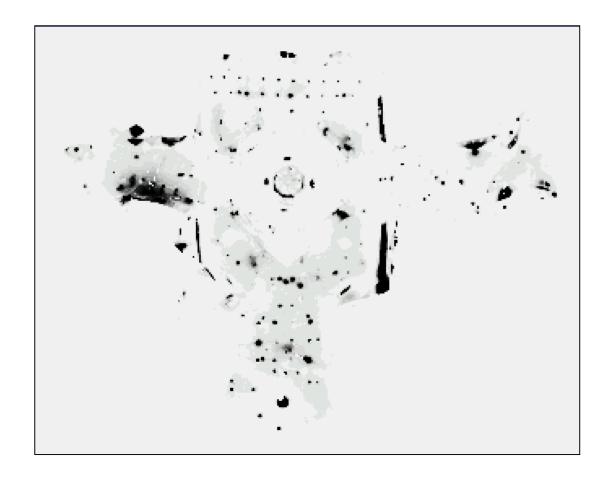


Under a Light

Measurement z:

P(z/x):

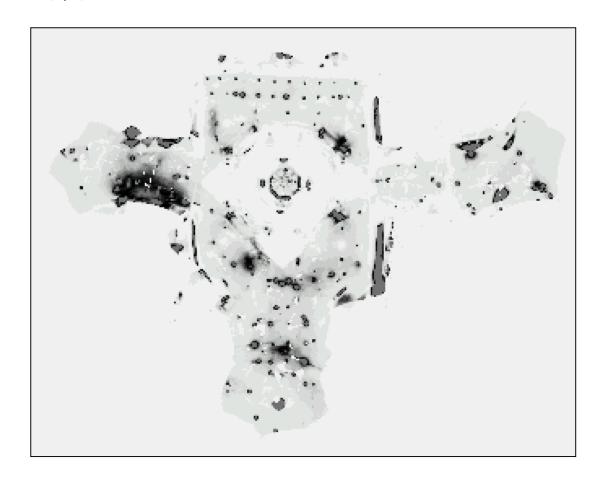




Next to a Light

Measurement z:

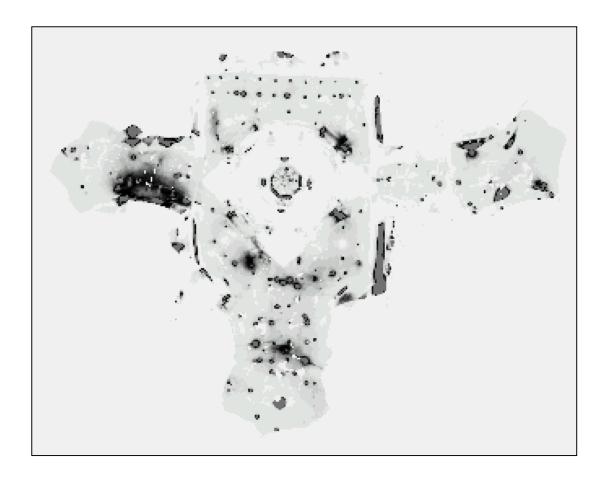
P(z/x):



Next to a Light

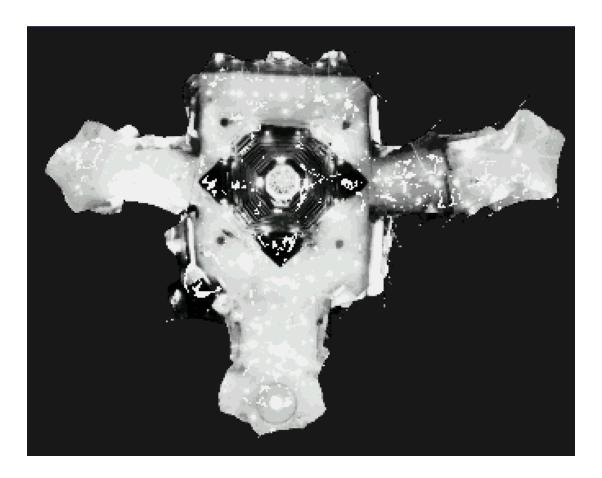
Measurement z:

P(z/x):



Elsewhere

Measurement z:



Global Localization Using Vision

