

Data Analysis for Smart Agriculture - Regression -

Prof. Matteo Matteucci – matteo.matteucci@polimi.it

Boston house prices dataset

- CRIM	per capita crime rate by town	
- ZN	proportion of residential land zoned for lots over 25,000 sq.ft.	
- INDUS	proportion of non-retail business acres per town	
- CHAS	Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)	
- NOX	nitric oxides concentration (parts per 10 million)	
- RM	average number of rooms per dwelling	Can we learn to pred
- AGE	proportion of owner-occupied units built prior to 1940	
- DIS	weighted distances to five Boston employment centres	(e.g., MEDV) by obse
- RAD	index of accessibility to radial highways	
- TAX	full-value property-tax rate per \$10,000	(e.g., CRIIVI, ZN
- PTRATIO	pupil-teacher ratio by town	
- B	1000(Bk - 0.63)^2 where Bk is the proportion of black people by town	
- LSTAT	% lower status of the population	

 LSTAT Median value of owner-occupied homes in \$1000's - MEDV

lict a target variable rving input features N, INDUS, ...)?

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

Let's start with a simple example ... can we predict Y from X?

Let's start with a simple example ... can we predict Y from X?

Let's add noise ... can we still predict Y from X?

Let's add noise ... can we still predict Y from X?

• Many alternative solutions

Let's add noise ... can we still predict Y from X?

- Many alternative solutions
- Linear modeling is an assumption

Noisy observations

Let's add noise ... can we still predict Y from X?

- Many alternative solutions
- Linear modeling is an assumption

Which one is the best?

Linear Regression

Given observed pairs $\langle x_i, y_i \rangle$, $\forall i \in N$, find the best linear model

 $y = w_0 + w_1 x$

- Infinite solutions exist
- Need to define an optimality criterion

Least Squares Estimation!

Noisy observations

Least Squares Regression

The Residual Sum of Squares (RSS) is used to evaluate the model. It is defined as the sum of the squared residues $e_i = y_i - \hat{y}_i$, i.e.,

$$RSS = e_1^2 + e_2^2 + \dots + e_N^2$$

Rewriting as a function of parameter, w_0 and w_1 , we obtain

$$RSS(w_0, w_1) = \sum_{i=1}^{N} (y_i - (w_0 + w_1 x_i))^2$$

Least Squares Regression

Then, the goal is to find the value of the weights / parameters w_0, w_1 (sometimes named as β_0, β_1) which minimize the RSS

$$w_{0}, w_{1} = \operatorname{argmin}_{w_{0}, w_{1}} RSS(w_{0}, w_{1}) = = \operatorname{argmin}_{w_{0}, w_{1}} \sum_{i=1}^{N} (y_{i} - (w_{0} + w_{1}x_{i}))^{2}$$

This is a function minimization problem we can solve by

- Computing gradients $\nabla RSS(w)$ w.r.t. weights $w = [w_0, w_1]$
- solving $\nabla RSS(w) = 0$.

Least Squares Regression

$$w_{0}, w_{1} = \underset{w_{0}, w_{1}}{\operatorname{argmin}} RSS(w_{0}, w_{1}) = \\ = \underset{w_{0}, w_{1}}{\operatorname{argmin}} \sum_{i=1}^{N} (y_{i} - (w_{0} + w_{1}x_{i}))^{2}$$

Putting the gradient $\nabla RSS(w_0, w_1) = 0$, we obtain

$$\frac{\partial RSS}{\partial w_0} = -2\sum_{i=1}^N (y_i - (w_0 + w_1 x_i)) = 0$$
$$\frac{\partial RSS}{\partial w_1} = -2\sum_{i=1}^N (y_i - (w_0 + w_1 x_i)) x_i = 0$$

 χ_2

 χ_1

Suppose to have M features, then the multivariate regression problem is

$$y = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_M x_M + \epsilon$$

A regression with 2 features $[x_1, x_2]$ and 1 target variable y. The least squares solution is a plane chosen by minimizing the distances between the observations and the plane.

Suppose to have M features, then the multivariate regression problem is

$$y = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_M x_M + \epsilon$$

$$y = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_M x_{M} + \epsilon$$

$$RSS = \sum_{i=1}^{N} (y_i - (w_0 + w_1 x_{i1} + w_2 x_{i2} + \dots + w_M x_{iM}))^2$$

$$= \sum_{i=1}^{N} \left(y_i - \left(w_0 + \sum_{m=1}^{M} w_m x_{im} \right) \right)^2$$

$$RSS(w) = (y - Xw)^T (y - Xw)$$

Suppose to have M features, then the multivariate regression problem is

$$RSS(w) = (y - Xw)^T (y - Xw)$$

Let's compute the derivatives

Quadratic function, thus convex, thus unique minimum ...

Putting the derivatives equal to zero and solving for w we obtain

 $w = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y$

 $\frac{\partial RSS}{\partial w} = -2X^T(y - Xw)^T$

which are known as the normal equations for the least squares problem.

Quite expensive with many samples ...

POLITECNICO A

Moore-Penrose pseudo-inverse of X

16

Non linearity of data

Multivariate linear regression assumes

- Linear relationship between features and target variables
- Additive relationship between features and target variables

Linear models could not be sufficient to fit observed data as a linear relationship between features and target may not hold.

Generalized Linear Regression

Given a set of input variables x_i , a set of N examples $< x_i, y_i >$ and a set of D features h_i computed from the input variables x_i , we get the model

$$y = w_0 + w_1 f(x)_1 + w_2 f(x)_2 + \dots + w_D f(x)_D + \epsilon$$

- $f_j(.)$ identify variables derived from the original inputs
- $f_j(.)$ could be derived from an existing variable, e.g., the squared value, a trigonometric function, the age given the date of birth, etc.

<u>Notes</u>: the solution can still be computed via matrix pseudo inverse (but you get a non linear model)

$$W = \left(f(X)^T f(X)\right)^{-1} f(X)Y$$

Input: LSTAT - % lower status of the population Output: MEDV - Median value of owner-occupied homes in \$1000's

Given a set of examples associating $LSTAT_i$ values to $MEDV_i$ values, nonlinear regression finds a function f(.) such that

$$MEDV_i = f(LSTAT_i) + \varepsilon_i$$

where $\boldsymbol{\epsilon}_i$ is the error to be minimized

A polynomial model would fit the data points with a function,

$$f(LSTAT_i) = w_0 + \sum_{j=1}^{D} w_j \times LSTAT_i^{j}$$

Coefficient of Determination R^2

Total sum of squares

$$TSS = \sum_{i=1}^{N} (y_i - \overline{y})^2$$

Coefficient of determination

$$R^2 = 1 - rac{RSS}{TSS}$$
 What about new data?

 R^2 measures of how well the regression line approximates the real data points. When R^2 is 1, the regression line perfectly fits the data.

Model Evaluation

Would be feasible to evaluate students using exactly the same problems solved in class?

<u>Overfitting</u>: perfect output on the training data, terrible outcome on data which has never seen before \otimes

Models should be evaluated using data that have not been used to build the model itself:

- Training data will be used to build the model
- Test data will be used to evaluate the model performance

Hold Out Evaluation

Reserves a certain amount for testing and uses the remainder for training

- Too small training sets might result in poor weight estimation
- Too small test sets might result in a poor estimation of future performance

Typically,

• Reserve 2/3 for training and 1/3 for testing (but percentage may vary)

Hold Out Evaluation on Housing Data

Given the original dataset, split the data into 2/3 train and 1/3 test and then apply linear regression using polynomials of increasing degree.

Cross-Validation

For small or "unbalanced" datasets, Hold Out samples might not be representative, thus k-fold Cross-Validation can be used:

- Data is split into k subsets of equal size
- Each subset in turn is used for testing and the remainder for training
- The error estimates are averaged to yield an overall error estimate

Cross-Validation

For small or "unbalanced" datasets, Hold Out samples representative, thus k-fold Cross-Validation can be used

K=10 gets accurate estimantes

test

train test

. . .

train

. . .

. . .

P10

Sometimes repeated multiple <u>times (e.g., 10)</u> 29

K-fold Cross-Validation on Housing Data

Given the original dataset, perform k-fold Cross-Validation on linear regression using polynomials of increasing degree.

Other non linearities: Sinergy

We could have interactions between variables (or sinergies)

<u>Advertising dataset example</u> Sales of a product in 200 markets, based on the advertising budgets for the product for 3 different media: TV, radio, newspaper.

Other non linearities: Sinergy

We could have interactions between variables (or sinergies)

<u>Advertising dataset example</u> Sales of a product in 200 markets, based on the advertising budgets for the product for 3 different media: TV, radio, newspaper.

> This effect in marketing is called *sinergy,* i.e., acting on one variable modifies the other variables

Linear model underestimates red regions and overestimates yellow ones

Radio

Sales

Modeling Sinergy

Let consider the classical Linear Regression model with 2 variables

 $y = w_0 + w_1 x_1 + w_2 x_2 + \epsilon$

- An increase in x_1 of 1 unit increases y on average by w_1 units
- Presence or absence of other variables does not affect this

We can extend the linear model with an interaction term

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1 x_2 + \epsilon$$

- Non-linearity w.r.t. the x variables
- Linear w.r.t. the parameters w

Modeling Sinergy

We can extend the linear model with an interaction term

 $y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1 x_2 + \epsilon$

- Non-linearity w.r.t. the x variables
- Linear w.r.t. the parameters w

This translates in a linear model by adding a new variable $x_3 = x_1 x_2$

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + \epsilon$$

We can use the same training algorithms for linear regression!

Checking for non linearities

Use residuals plot to check if the linearity assumption does not hold

Non-Constant Variance of Error Term

Linear Regression assumes no heteroscedasticity in the noise

$$y = w_0 + w_1 x_1 + \dots + w_N x_N + \epsilon \quad \text{with } \epsilon \sim \mathcal{N}(0, \sigma^2)$$

This might not be true, and the variance is a function $\sigma^2(x)$ of the data

- this effect is called heteroscedasticity
- if we have a constant σ^2 we have instead homoscedasticity

Non-Constant Variance of Error Term

FIGURE 3.11. Residual plots. In each plot, the red line is a smooth fit to the residuals, intended to make it easier to identify a trend. The blue lines track the outer quantiles of the residuals, and emphasize patterns. Left: The funnel shape indicates heteroscedasticity. Right: The response has been log transformed, and there is now no evidence of heteroscedasticity.

Outliers, residual plot, and studentized residuals

FIGURE 3.12. Left: The least squares regression line is shown in red, and the regression line after removing the outlier is shown in blue. Center: The residual plot clearly identifies the outlier. Right: The outlier has a studentized residual of 6; typically we expect values between -3 and 3.

Outliers, residual plot, and studentized residuals

FIGURE 3.12. Left: The least squares regression line is shown in red, and the regression line after removing the outlier is shown in blue. Center: The residual plot clearly identifies the outlier. Right: The outlier has a studentized residual of 6; typically we expect values between -3 and 3.

Easy to observe with only one feature

FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not. The red line is the fit to all the data, and the blue line is the fit with observation 41 removed. Center: The red observation is not unusual in terms of its X_1 value or its X_2 value, but still falls outside the bulk of the data, and hence has high leverage. Right: Observation 41 has a high leverage and a high residual.

Easy to observe with only one feature

FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not. The red line is the fit to all the data, and the blue line is the fit with observation 41 removed. Center: The red observation is not unusual in terms of its X_1 value or its X_2 value, but still falls outside the bulk of the data, and hence has high leverage. Right: Observation 41 has a high leverage and a high residual.

The value of the high leverage point is in the range of each individual feature's values, but it is an high leverage point

FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not. The red line is the fit to all the data, and the blue line is the fit with observation 41 removed. Center: The red observation is not unusual in terms of its X_1 value or its X_2 value, but still falls outside the bulk of the data, and hence has high leverage. Right: Observation 41 has a high leverage and a high residual.

The value of the high leverage point is in the range of each individual feature's values, but it is an high leverage point

Colinearity

Colinearity happens when two variables are highly correlated

If two variables are correlated, it can be difficult to estimate the relationship between each variable separately with the response

Improved Linear Regression

We can devise alternative procedures to least squares

- <u>Improve prediction accuracy</u>: if number of data is limited (or p is big) we might have "low bias" but too "high variance" (overfitting) and a poor prediction
- <u>Improve model interpretability</u>: irrelevant variables, beside impacting on accuracy, make models unnecessary complex and difficult to interpret

Several alternatives to remove unnecessary features (predictors)

- Subset Selection: selection of the input variables
- Shrinkage (or regularization): reduction of model variance
- Dimension reduction: projection on an input subspace

Shrinkage Methods: Ridge Regression

Ordinary Least Squares (OLS) minimizes

$$RSS = \sum_{i=1}^{N} \left(y_i - \left(w_0 + \sum_{m=1}^{M} w_m x_{im} \right) \right)^2$$

Ridge Regression minimizes a slightly different function

$$\sum_{i=1}^{N} \left(y_i - \left(w_0 + \sum_{m=1}^{M} w_m x_{im} \right) \right)^2 + \lambda \sum_{m=1}^{M} w_m^2 = RSS + \lambda \sum_{m=1}^{M} w_m^2$$

- $\lambda \ge 0$ is a tuning parameter to be estimated experimentally
- $\lambda \sum_{m=1}^{M} w_m^2$ is called shrinkage penalty
- as $\lambda \to \infty$ parameters shrink to zero

Shrinkage Methods: Ridge Regression

Shrinkage Methods: Ridge Regression

Shrinkage Methods: The Lasso

It is an alternative to the ridge regression

$$\sum_{i=1}^{N} \left(y_i - \left(w_0 + \sum_{m=1}^{M} w_m x_{im} \right) \right)^2 + \lambda \sum_{m=1}^{M} |w_m| = RSS + \lambda \sum_{m=1}^{M} |w_m|$$

- $\lambda \ge 0$ is a tuning parameter to be estimated experimentally
- $\lambda \sum_{m=1}^{M} |w_m|$ is called lasso penalty
- as $\lambda \to \infty$ parameters shrink to zero

It forces some of the coefficients to be exactly zero, it performs variable selection ...

Shrinkage Methods: Lasso

