

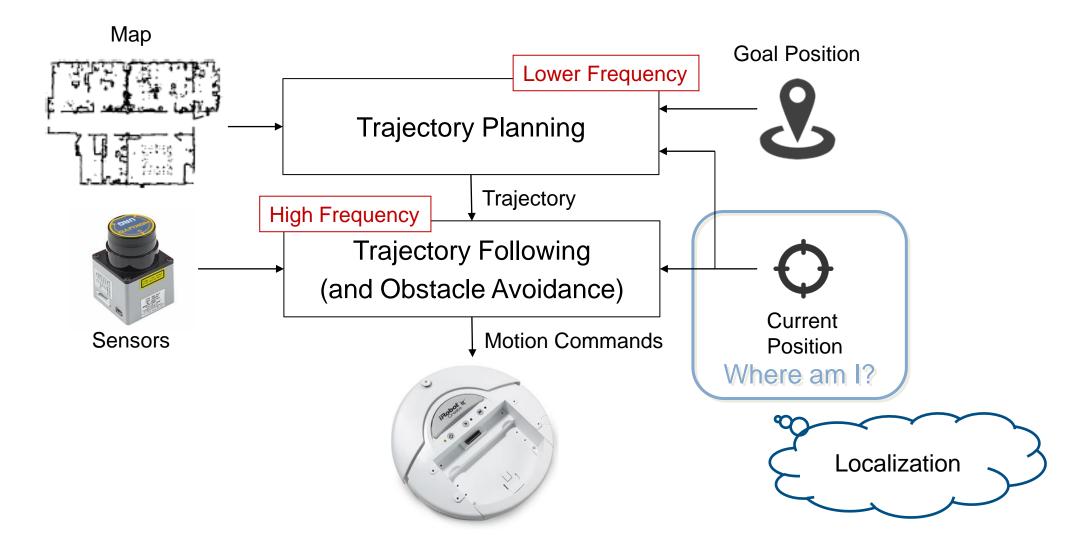
Robotics

Robot Localization – Sensor Models and Bayesian Filtering

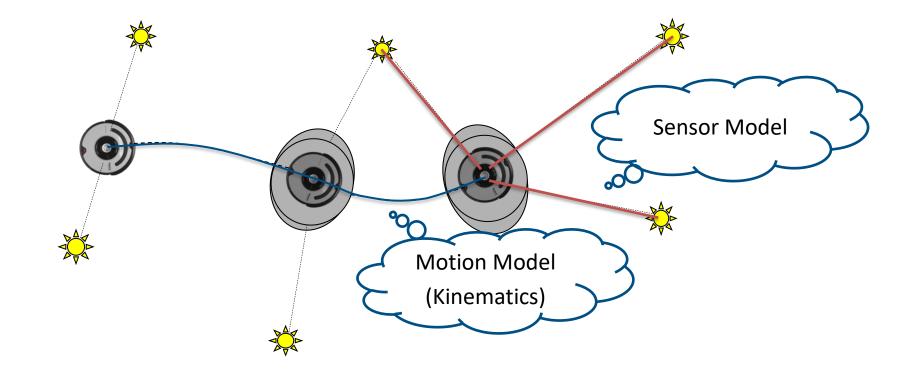
Matteo Matteucci matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

A Simplified Sense-Plan-Act Architecture

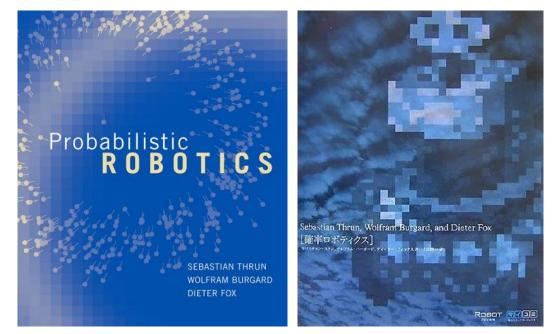


Localization with Knowm Map



Disclaimer ...

Slides from now on have been heavily "inspired" by the teaching material kindly provided with: S. Thrun, D. Fox, W. Burgard. "*Probabilistic Robotics*". MIT Press, 2005

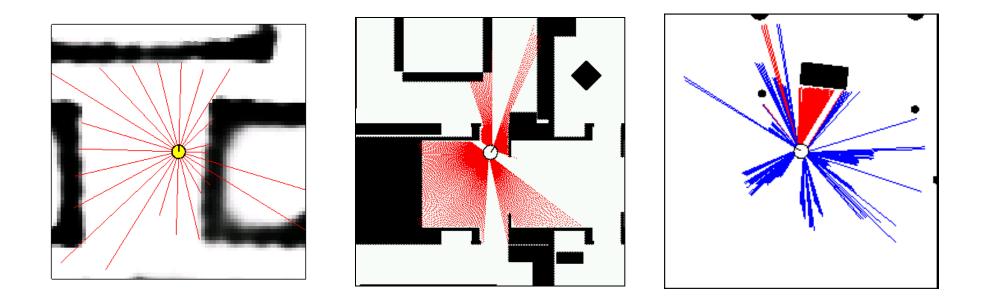


http://robots.stanford.edu/probabilistic-robotics/

You can refer to the original source for deeper analysis and references on the topic ...

Range Sensors Models

The sensor model describes P(z|x), i.e., the probability of a measurement z given that the robot is at position x.



Range Sensors

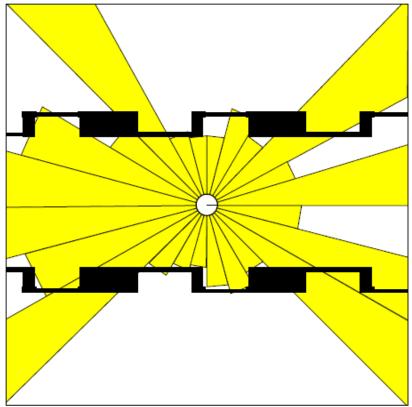
The sensor model describes P(z|x), i.e., the probability of a measurement z given that the robot is at position x.

In particular a scan z consists of K measurements.

$$z = \{z_1, z_2, ..., z_K\}$$

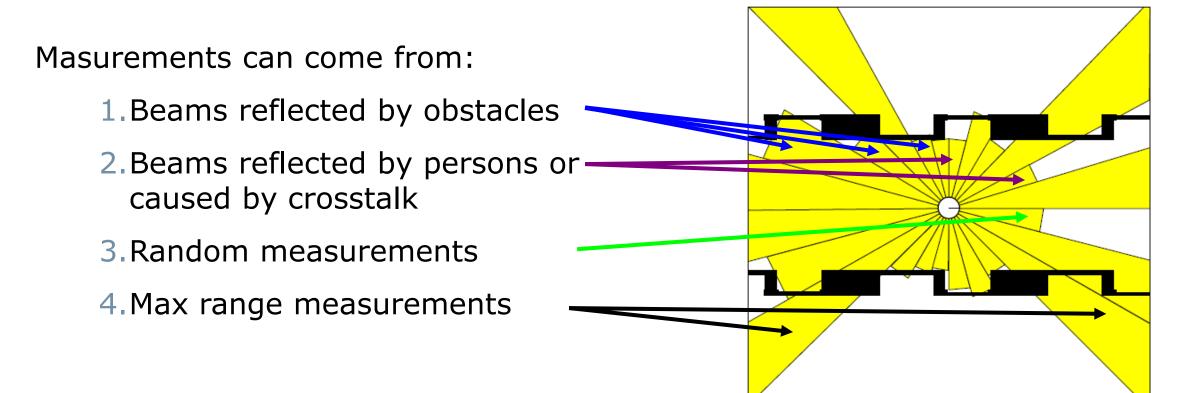
Individual measurements are independent given robot position and surrounding map.

$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$



Typical Measurement Errors of an Range Measurements

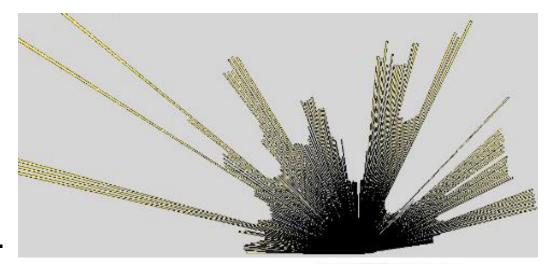
The sensor model describes P(z|x), i.e., the probability of a measurement z given that the robot is at position x.



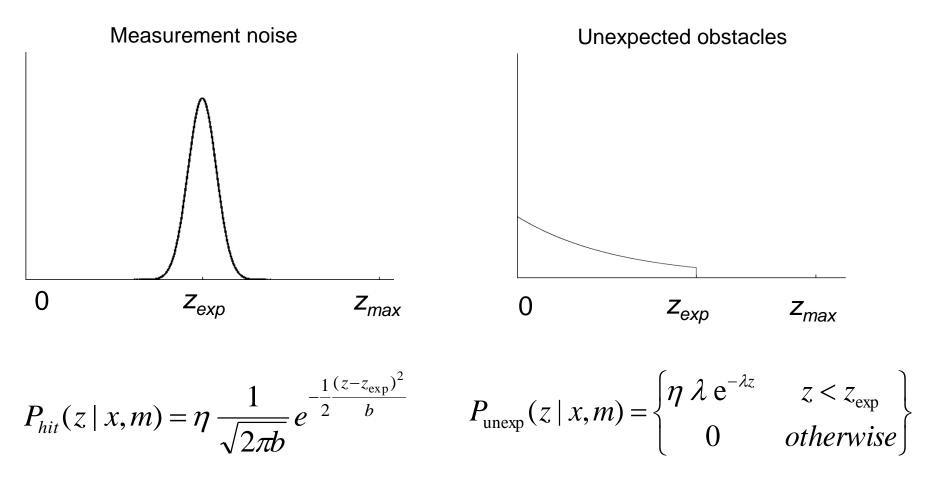
Distance perception: Laser Range Finder

Lasers are definitely more accurate sensors

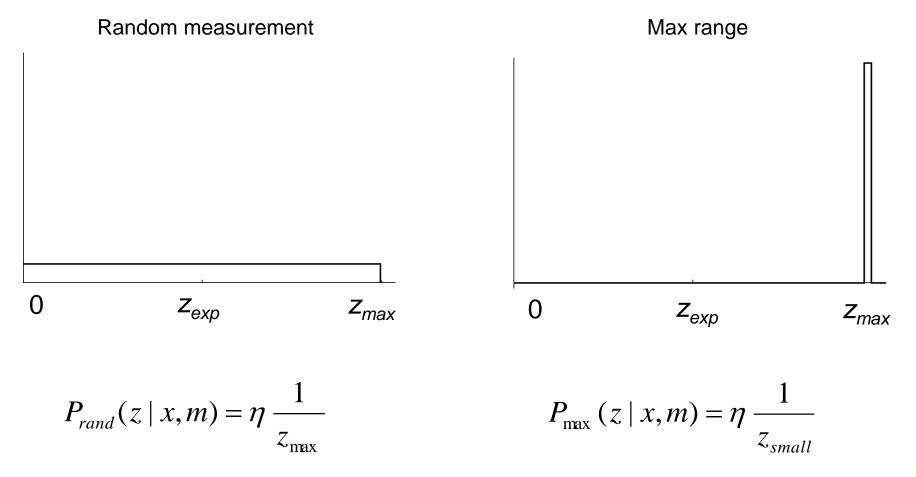
- 180 ranges over 180° (up to 360°)
- 1 to 64 planes scanned, 10-75 scans/s
- <1cm range resolution</p>
- Max range up to 50-80 m
- Issues with mirrors, glass, and matte black.



The laser range finder model describes each single measurement using

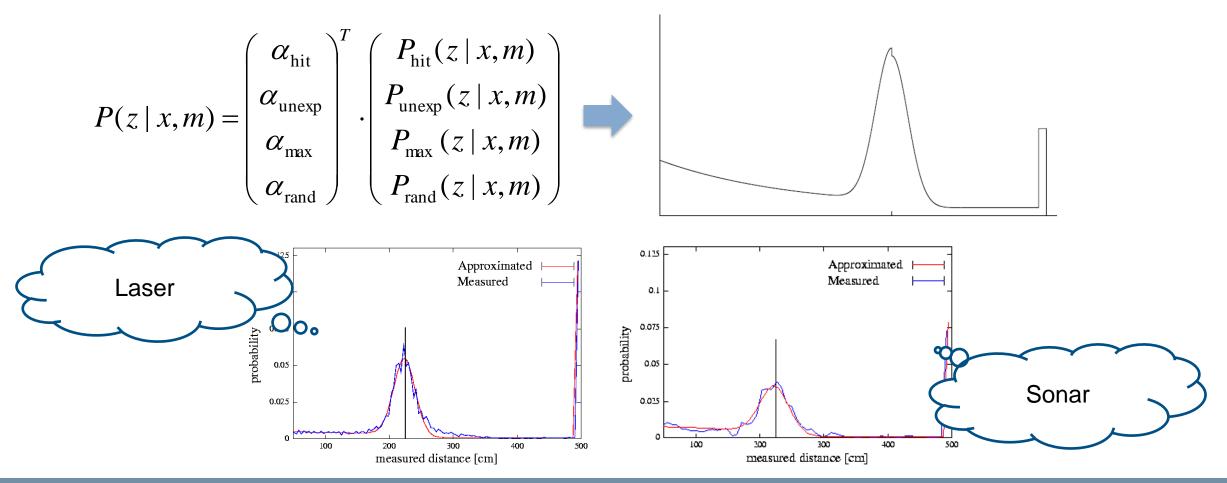


The laser range finder model describes each single measurement using



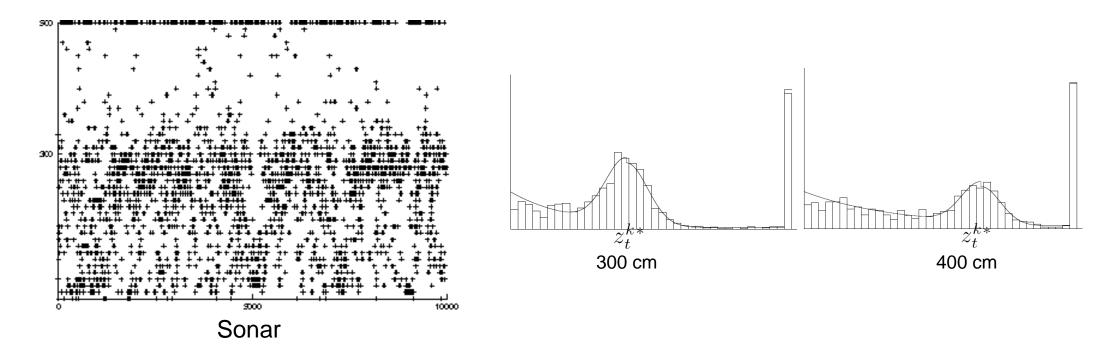
Beam Sensor Model (III)

The laser range finder model describes each single measurement using



Sensor Model Calibration (Sonar)

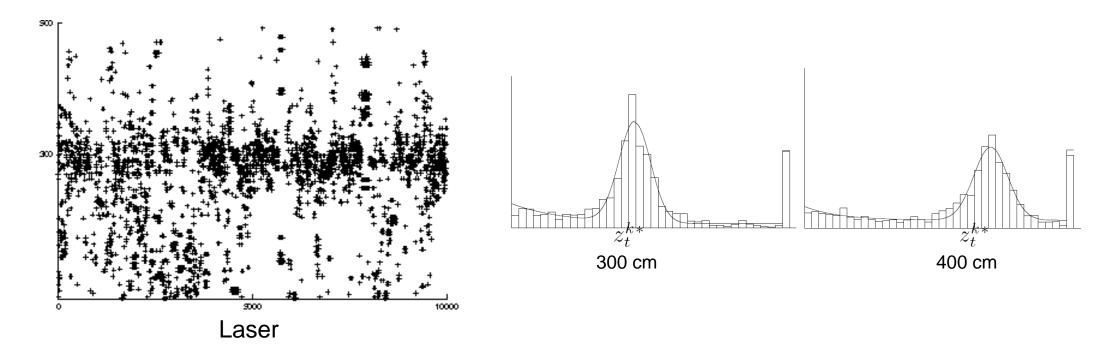
Acquire some data from the sensor, e.g., when the target is at 300 cm and 400 cm



Then estimate the model parameters via maximum likelihood: $P(z | z_{exp})$

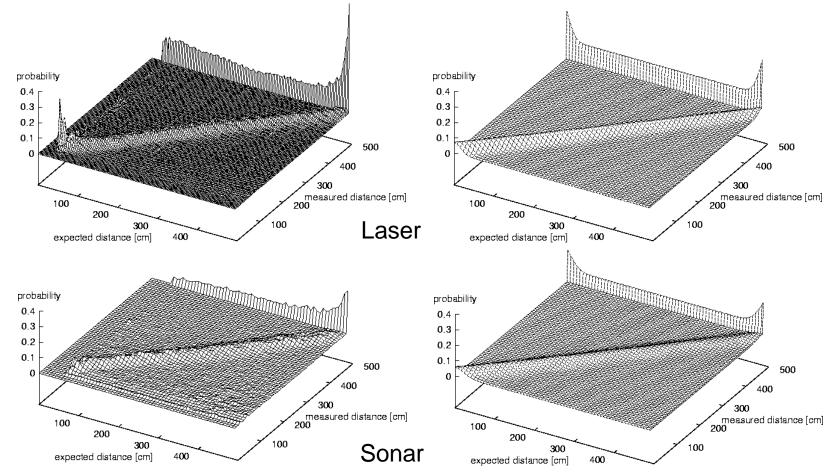
Sensor Model Calibration (Laser)

Acquire some data from the sensor, e.g., when the target is at 300 cm and 400 cm



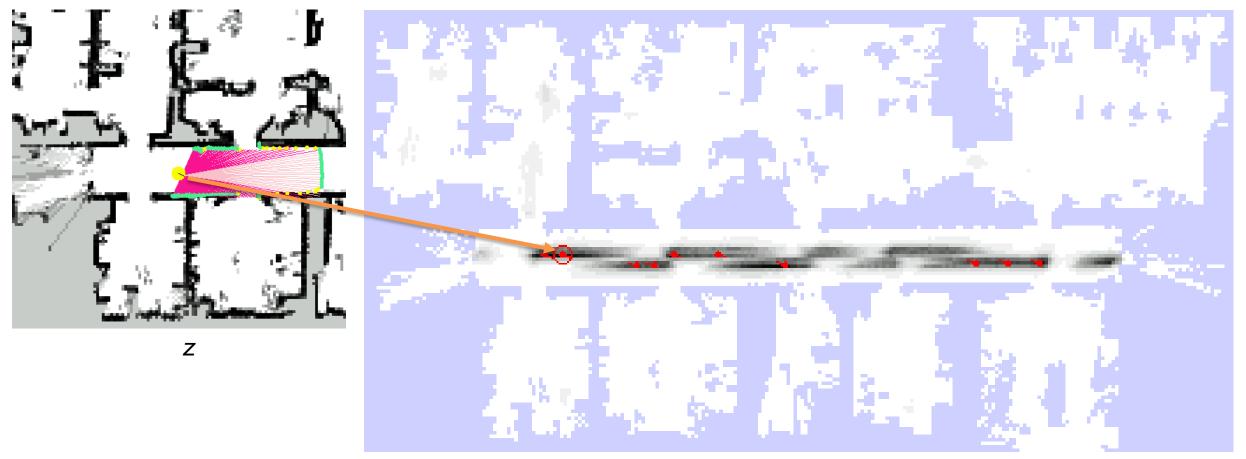
Then estimate the model parameters via maximum likelihood: $P(z | z_{exp})$

Discete Model for Range Sensor



Instead of densities, consider discrete steps along the sensor beam

Sensor Model Likelihood



P(z|x,m)

Scan Sensor Model

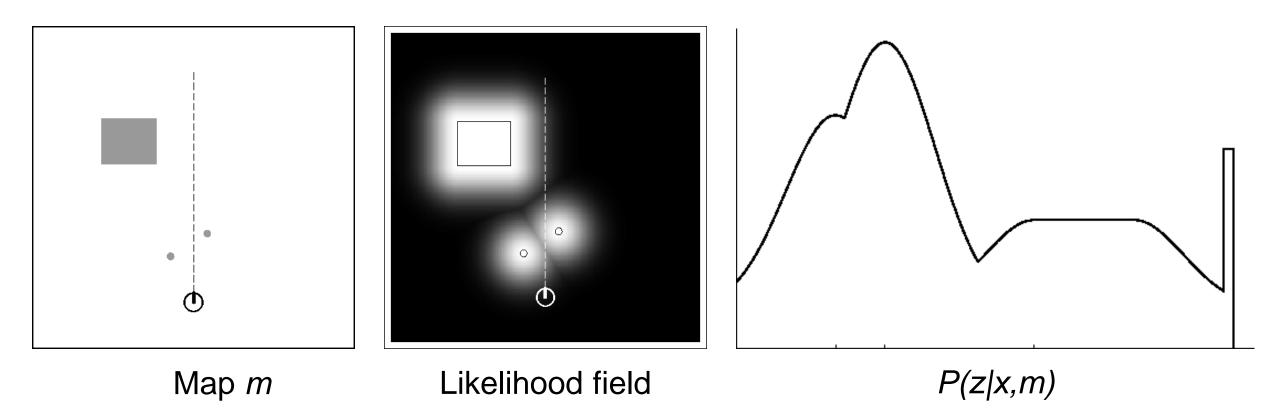
The Beam sensor model assumes independence between beams and between physical causes of measurements and turns out to have some issues:

- Overconfident because of independency assumptions
- Need to learn parameters from data
- A different model should be learned for different angles w.r.t. obstacles
- Inefficient because it uses ray tracing

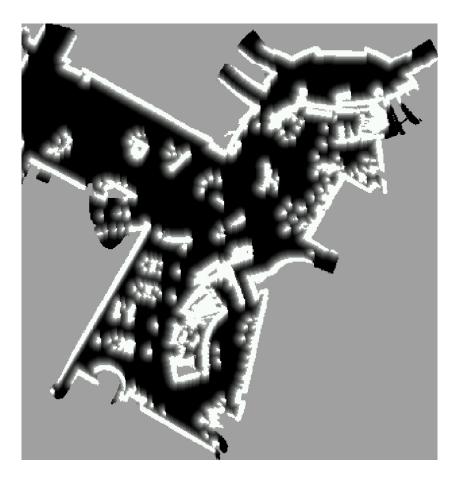
The Scan Sensor Model simplifies Beam Sensor Model with:

- Gaussian distribution with mean at distance to **closest** obstacle,
- Uniform distribution for random measurements, and
- Small uniform distribution for max range measurements

Scan Sensor Model Example



San Jose Tech Museum

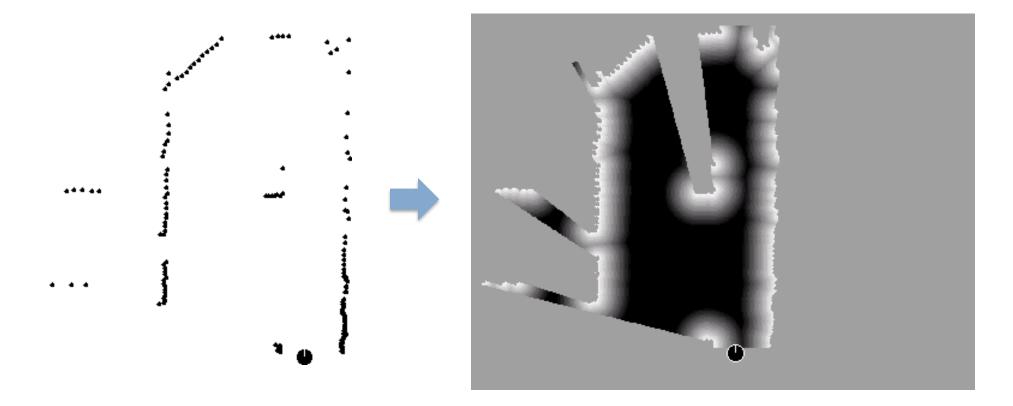


Occupancy grid map

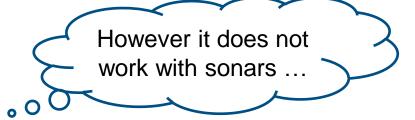
Likelihood field

Scan Matching via Likelihood Field

Extract likelihood field from scan and use it to match different scan:

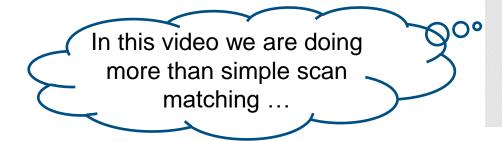


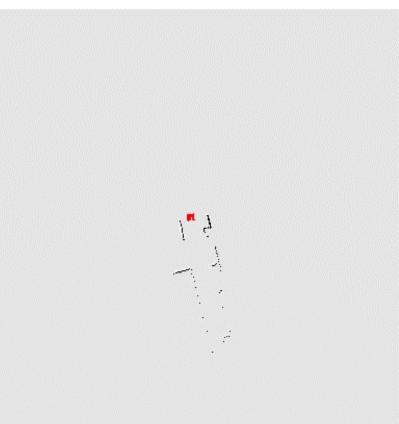
Scan Matching via Likelihood Field



Extract likelihood field from scan and use it to match different scan:

- Highly efficient, uses 2D tables only.
- Smooth with respect to small changes in robot position
- Allows gradient descent pose optimization
- Ignores physical properties of beams.

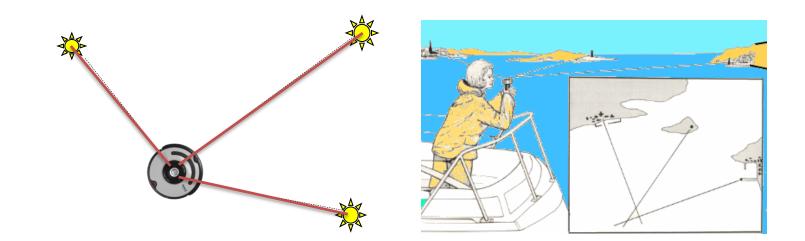




Landmarks

Landmark sensors provides

- Distance (or)
- Bearing (or)
- Distance and bearing



Can be obtained via

- Active beacons (e.g., radio, GPS)
- Passive (e.g., visual, retro-reflective)

Standard approach is triangulation

Landmark Models with Uncertainty

Explicitly modeling uncertainty in sensing is key to robustness:

- Determine parametric model for noise free measurement
- Analyze sources of noise (e.g., distance and angle)
- Add adequate noise to parameters (eventually mix in densities for noise)
- Learn (and verify) parameters by fitting model to data

The likelihood of measurement is given by "probabilistically comparing" actual measurements against the expected ones.

⊲**(_)**⊳

Landmark Detection Model

For landmak *i* in map *m*, i.e., m(i), the measurement $z = (i, d, \alpha)$ for a robot at position (x, y, θ) is given by

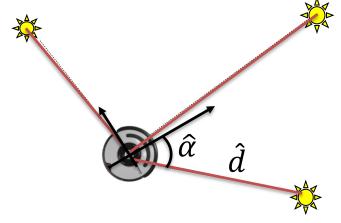
$$\hat{d} = \sqrt{(m_x(i) - x)^2 + (m_y(i) - y)^2}$$

 $\hat{a} = \operatorname{atan2}(m_y(i) - y, m_x(i) - x) - \theta$

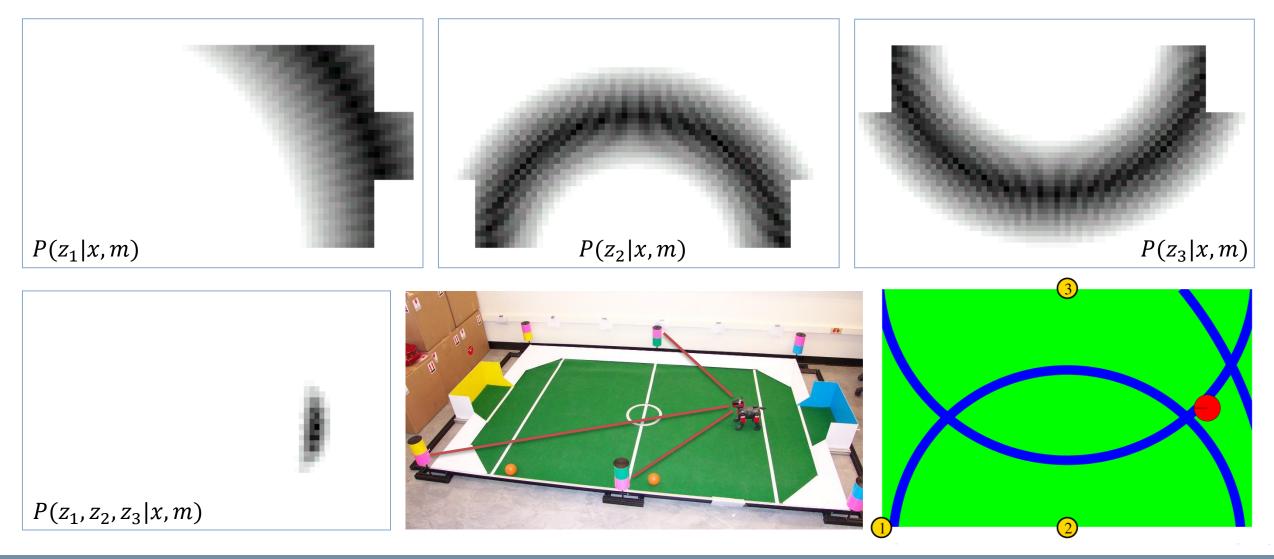
Detection probability might depend on the distance/bearing $p_{det} = \operatorname{prob}(\hat{d} - d, \varepsilon_d) \cdot \operatorname{prob}(\hat{\alpha} - \alpha, \varepsilon_\alpha)$

Then we have to take into account false positives too

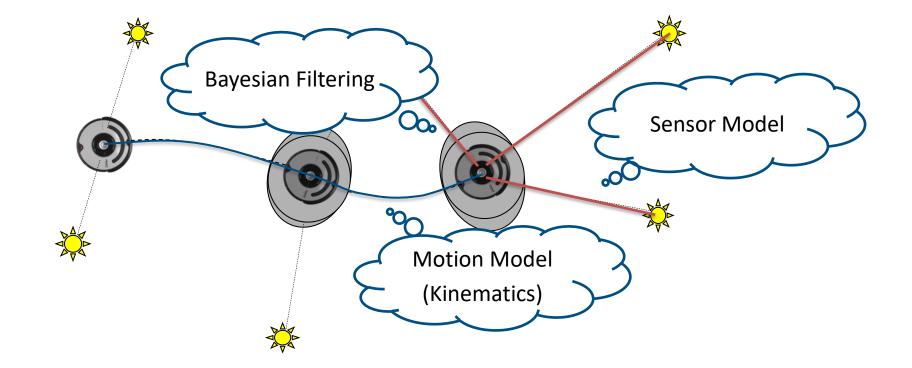
$$z_{\text{det}} p_{\text{det}} + z_{\text{fp}} P_{\text{uniform}}(z \mid x, m)$$

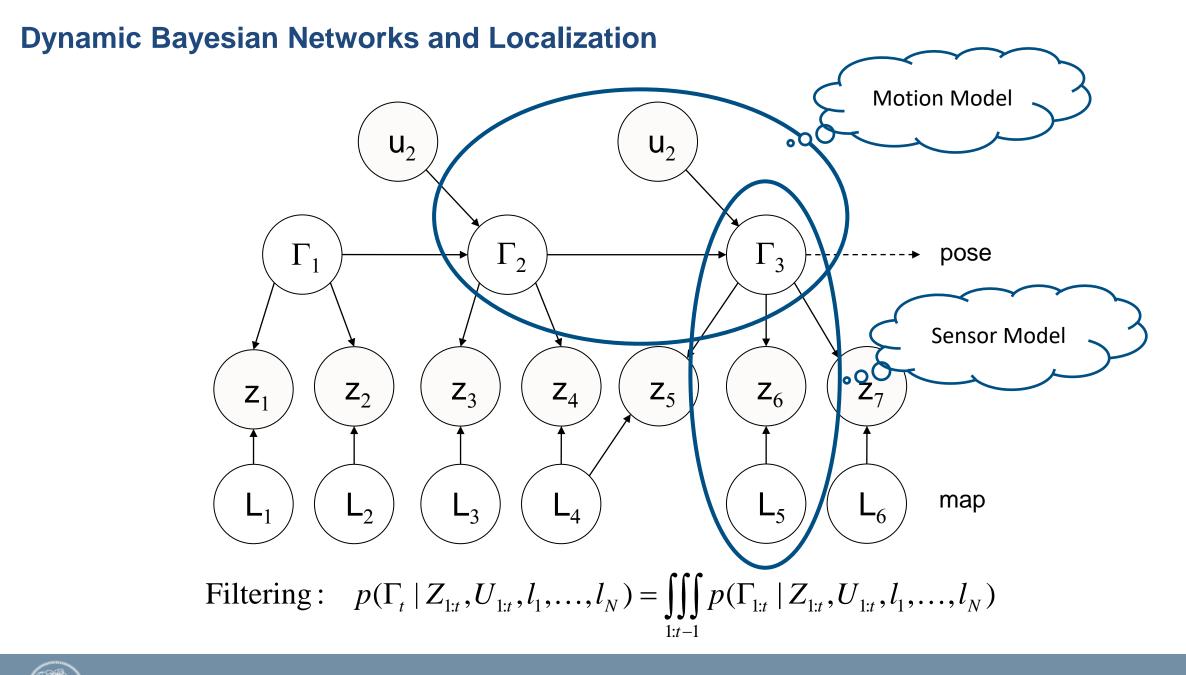


RoboCup Example



Localization with Knowm Map





POLITECNICO MILANO 1863

Bayesian Filtering Framework

We want to compute an estimate of the posterios probabibility of robot state x_t

 $Bel(x_t) = P(x_t | u_1, z_1 ..., u_t, z_t, m)$

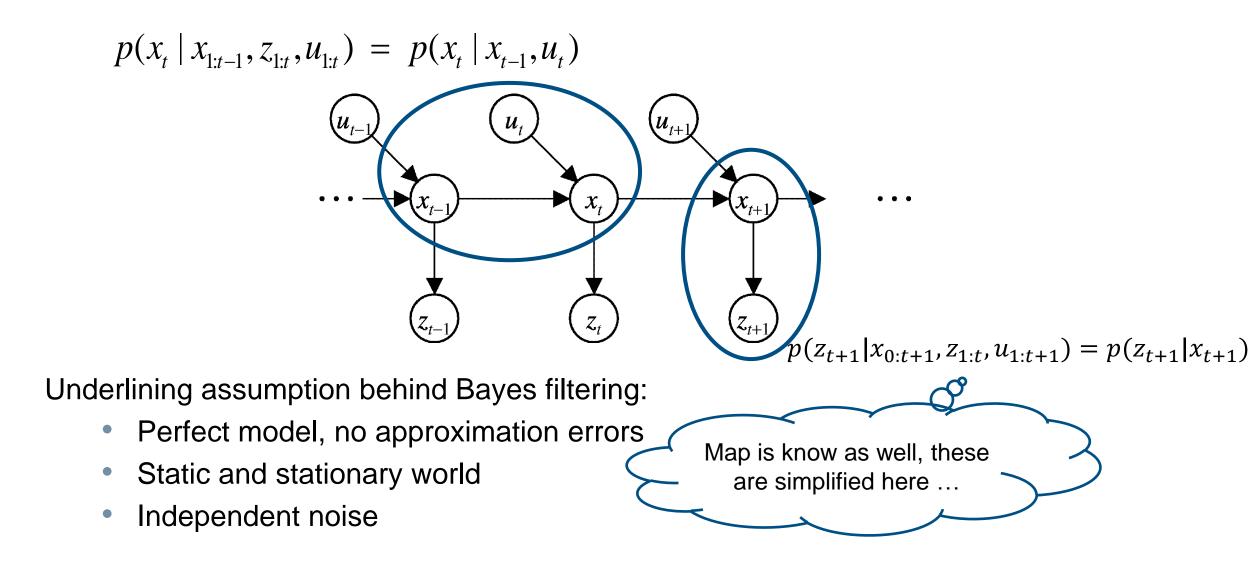
from the stream of information about movement and sensors

$$d_t = \{u_1, z_1, \dots, u_t, z_t\}$$

In particular we assume known:

- The prior probability of the system state $P(x_0)$
- The motion model P(x'|x, u)
- The sensor model P(z|x,m)

Markov Assumptions



Bayes Filters

$$\begin{array}{l} \textbf{Bel}(x_{t}) = P(x_{t} \mid u_{1}, z_{1}, \dots, u_{t}, z_{t}, m) & z = \text{observation} \\ \textbf{Bayes} = \eta \ P(z_{t} \mid x_{t}, u_{1}, z_{1}, \dots, u_{t}, m) \ P(x_{t} \mid u_{1}, z_{1}, \dots, u_{t}, m) \\ \textbf{Markov} = \eta \ P(z_{t} \mid x_{t}, m) \ P(x_{t} \mid u_{1}, z_{1}, \dots, u_{t}, m) \\ \textbf{Total prob.} = \eta \ P(z_{t} \mid x_{t}, m) \ \int P(x_{t} \mid u_{1}, z_{1}, \dots, u_{t}, m) \ dx_{t-1} \\ \textbf{Markov} = \eta \ P(z_{t} \mid x_{t}, m) \ \int P(x_{t} \mid u_{t}, x_{t-1}) \ P(x_{t-1} \mid u_{1}, z_{1}, \dots, u_{t}, m) \ dx_{t-1} \\ \textbf{Markov} = \eta \ P(z_{t} \mid x_{t}, m) \ \int P(x_{t} \mid u_{t}, x_{t-1}) \ P(x_{t-1} \mid u_{1}, z_{1}, \dots, u_{t}, m) \ dx_{t-1} \\ \textbf{Markov} = \eta \ P(z_{t} \mid x_{t}, m) \ \int P(x_{t} \mid u_{t}, x_{t-1}) \ P(x_{t-1} \mid u_{1}, z_{1}, \dots, u_{t}, m) \ dx_{t-1} \\ \textbf{Markov} = \eta \ P(z_{t} \mid x_{t}, m) \ \int P(x_{t} \mid u_{t}, x_{t-1}) \ P(x_{t-1} \mid u_{1}, z_{1}, \dots, z_{t-1}, m) \ dx_{t-1} \\ \end{array}$$

Bayes Filter Algorithm

 $Bel(x_t|m) = \eta \ P(z_t|x_t,m) \int P(x_t|u_t,x_{t-1},m) \ Bel(x_{t-1}|m) \ dx_{t-1}$ How to represent such belief?

if d is a perceptual data item z then For all x do

 $Bel'(x) = P(z \mid x)Bel(x)$

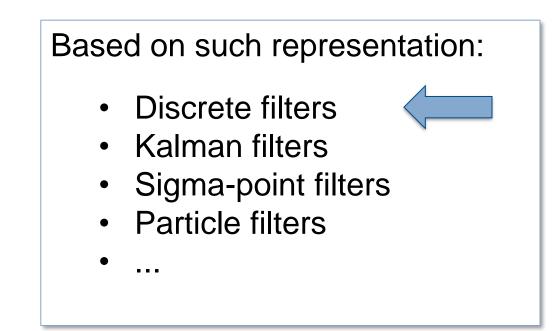
Normalize *Bel'(x)*

Algorithm Bayes_filter(Bel(x), d):

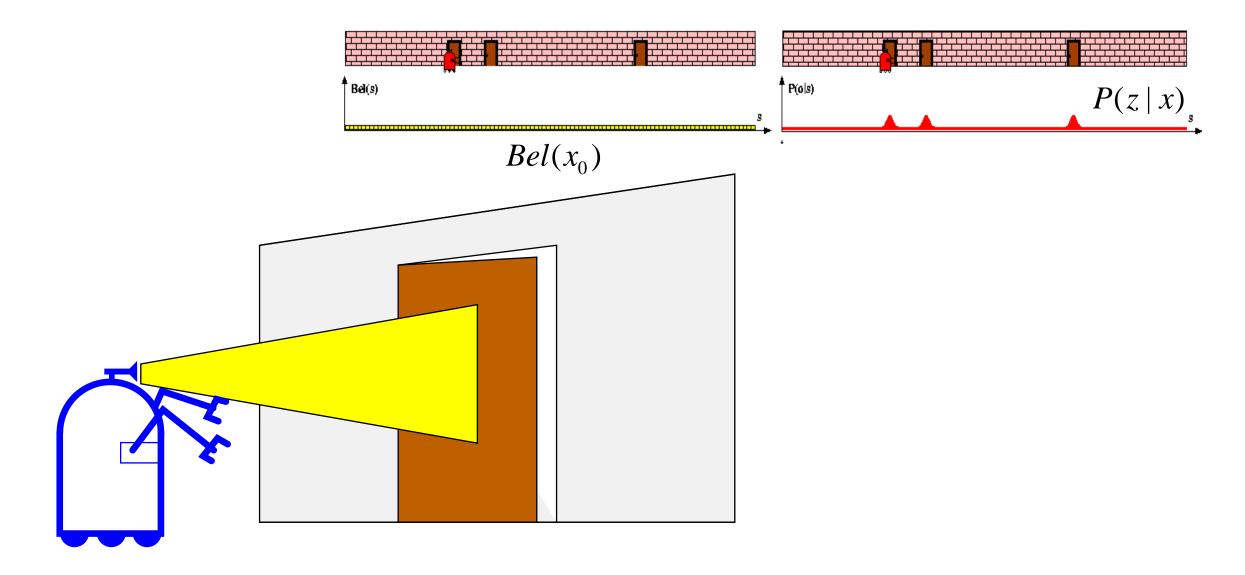
else if *d* is an action data item *u* then

For all *x* do

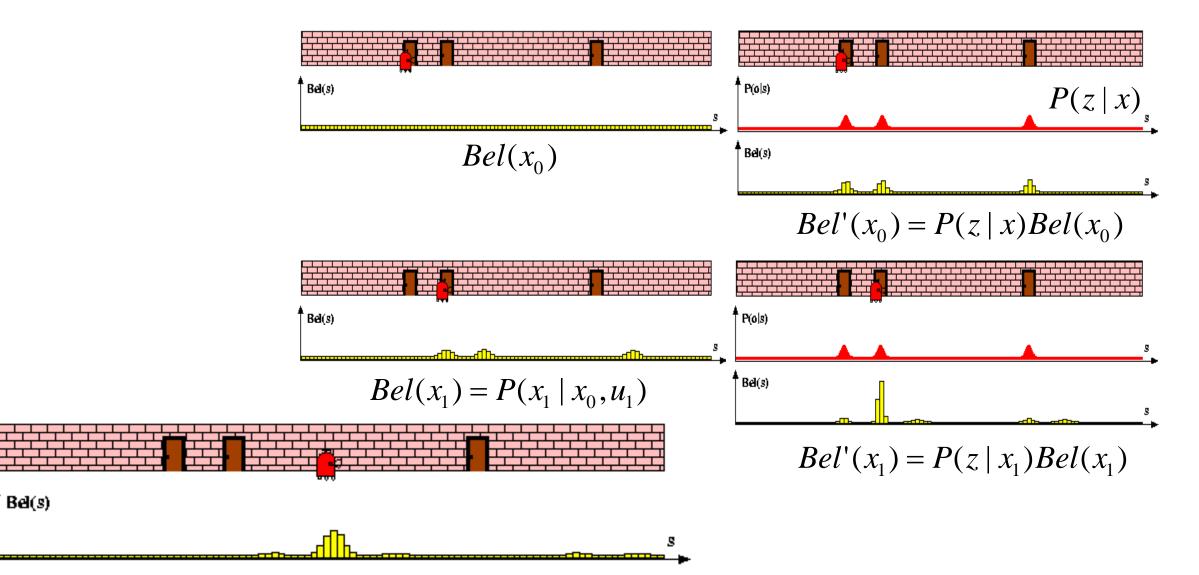
 $Bel'(x) = \int P(x \mid u, x') Bel(x') dx'$ return Bel'(x)



Piecewise Constant Approximation

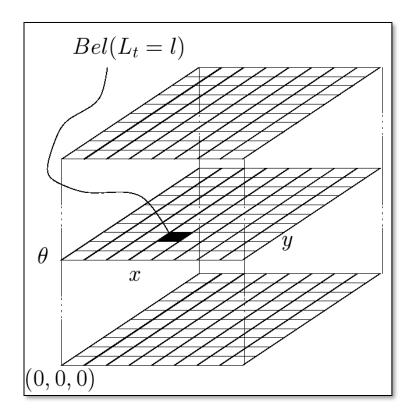


Piecewise Constant Approximation



Discrete Bayesian Filter Algorithm

Algorithm Discrete_Bayes_filter(*Bel(x),d*): h=0 If *d* is a perceptual data item *z* then For all x do $Bel'(x) = P(z \mid x)Bel(x)$ $\eta = \eta + Bel'(x)$ For all x do $Bel'(x) = \eta^{-1}Bel'(x)$ Else if *d* is an action data item *u* then For all x do $Bel'(x) = \sum_{x} P(x \mid u, x') Bel(x')$ Return *Bel'(x)*



Tips and Tricks

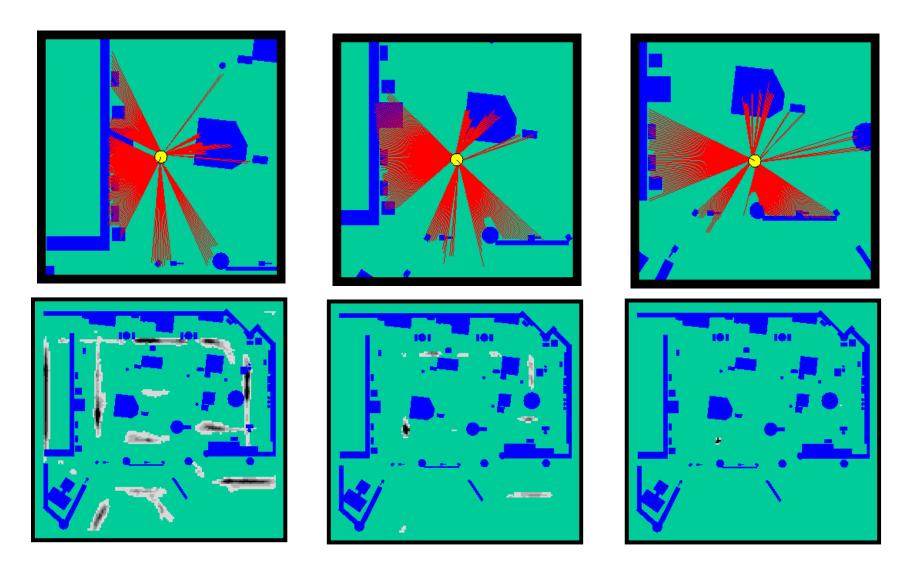
Belief update upon sensory input and normalization iterates over all cells

- When the belief is peaked (e.g., during position tracking), avoid updating irrelevant parts.
- Do not update entire sub-spaces of the state space and monitor whether the robot is de-localized or not by considering likelihood of observations given the active components

To update the belief upon robot motions, assumes a bounded Gaussian model to reduce the update from $O(n^2)$ to O(n)

- Update by shifting the data in the grid according to measured motion
- Then convolve the grid using a Gaussian Kernel.

Grid Based Localization



Bayes Filter Algorithm

 $Bel(x_t|m) = \eta \ P(z_t|x_t,m) \int P(x_t|u_t,x_{t-1},m) \ Bel(x_{t-1}|m) \ dx_{t-1}$ How to represent such belief?

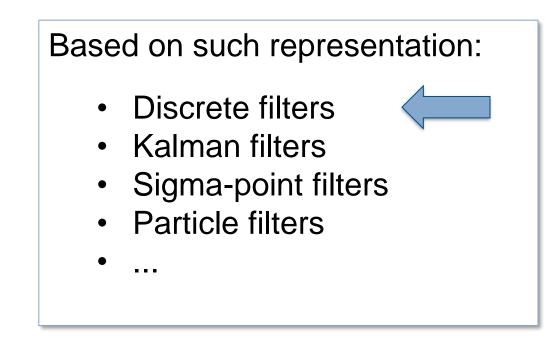
if *d* is a perceptual data item *z* then For all *x* do Bel'(x) = P(z | x)Bel(x)

Normalize *Bel'(x)*

Algorithm Bayes_filter(Bel(x), d):

else if *d* is an action data item *u* then

For all x do $Bel'(x) = \int P(x | u, x') Bel(x') dx'$ return Bel'(x)



Bayes Filter Reminder

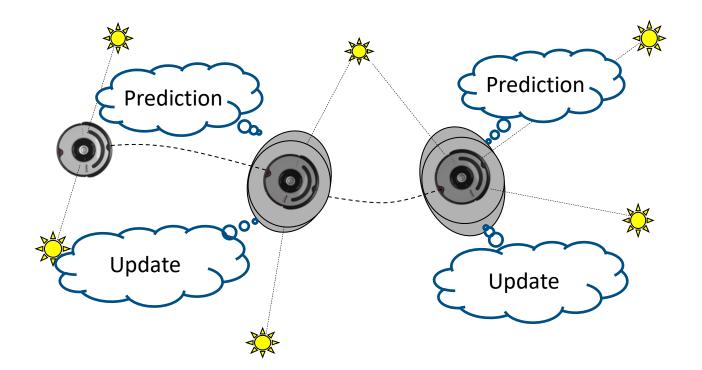
$$Bel(x_t|m) = \eta \ P(z_t|x_t,m) \ \int P(x_t|u_t,x_{t-1},m) \ Bel(x_{t-1}|m) \ dx_{t-1}$$

Prediction:
$$\overline{Bel}(x_t|m) = \int p(x_t|u_t, x_{t-1}, m) Bel(x_{t-1}|m) dx_{t-1}$$

Correction/Update: $Bel(x_t|m) = \eta p(z_t|x_t, m)\overline{Bel}(x_t|m)$

POLITECNICO MILANO 1863

Localization with Knowm Map



Bayes Filter Reminder

$$Bel(x_t|m) = \eta \ P(z_t|x_t,m) \ \left| P(x_t|u_t,x_{t-1},m) \ Bel(x_{t-1}|m) \ dx_{t-1} \right|$$

~

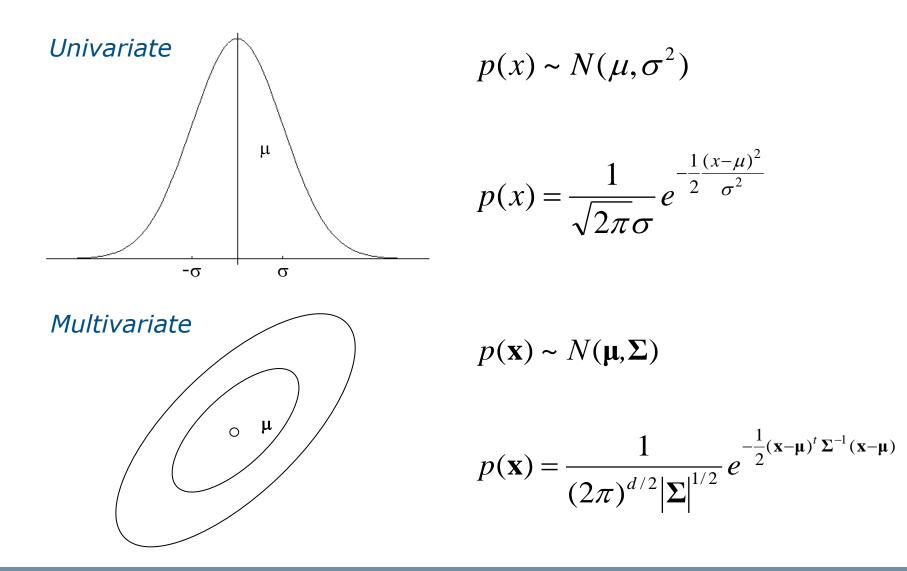
Prediction:
$$\overline{Bel}(x_t|m) = \int p(x_t|u_t, x_{t-1}, m) Bel(x_{t-1}|m) dx_{t-1}$$

Correction/Update:
$$Bel(x_t|m) = \eta p(z_t|x_t, m)\overline{Bel}(x_t|m)$$

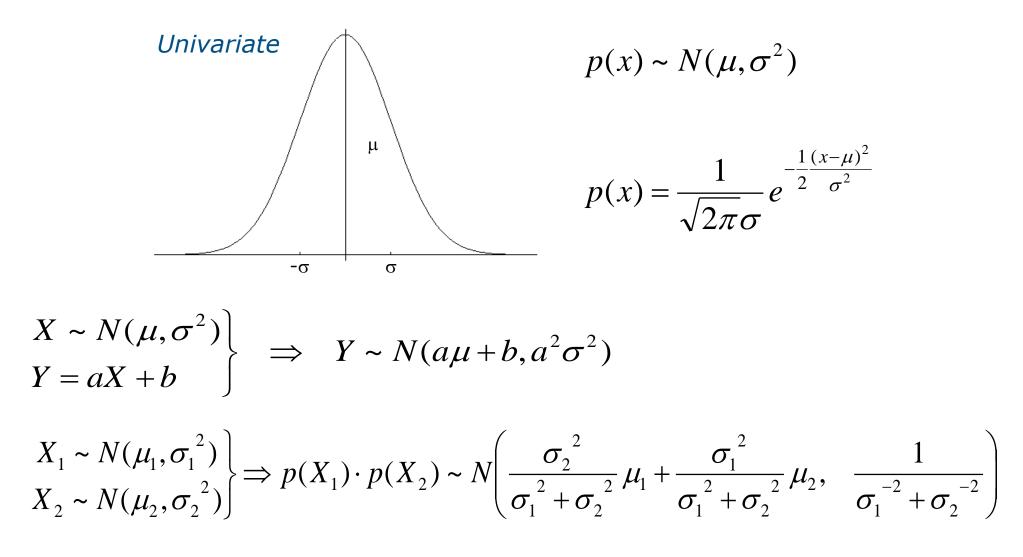
Can we compute the integrals (η is an integral too) in closed form for continuos distributions?

Is there any continuous distribution for which this is possible?

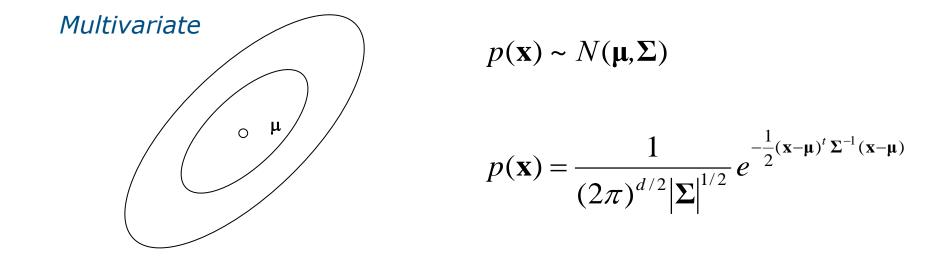
Gaussian Distribution



Properties of Gaussian Distribution

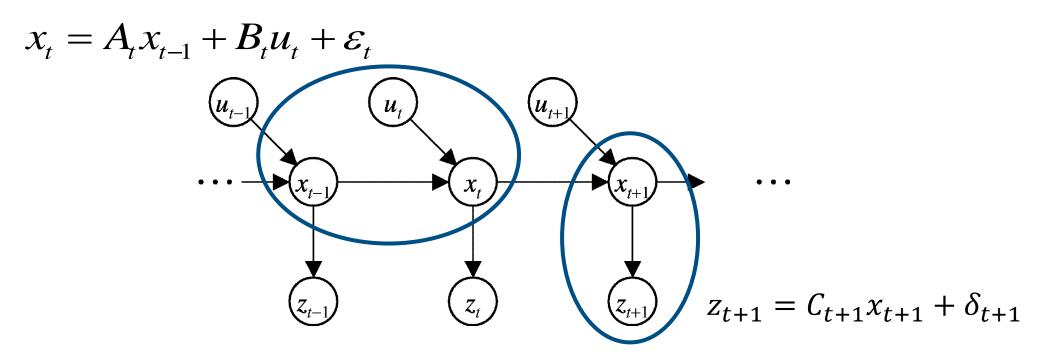


Properties of Gaussian Distribution



$$\begin{array}{l} X \sim N(\mu, \Sigma) \\ Y = AX + B \end{array} \Rightarrow Y \sim N(A\mu + B, A\Sigma A^{T}) \\ \\ \begin{array}{l} X_{1} \sim N(\mu_{1}, \Sigma_{1}) \\ X_{2} \sim N(\mu_{2}, \Sigma_{2}) \end{array} \Rightarrow p(X_{1}) \cdot p(X_{2}) \sim N \Biggl(\frac{\Sigma_{2}}{\Sigma_{1} + \Sigma_{2}} \mu_{1} + \frac{\Sigma_{1}}{\Sigma_{1} + \Sigma_{2}} \mu_{2}, \quad \frac{1}{\Sigma_{1}^{-1} + \Sigma_{2}^{-1}} \Biggr) \end{array}$$

Discrete Time Kalman Filter



- A_t (n x n) describes how state evolves from t-1 to t w/o controls or noise
- B_t (n x I) describes how control u_t changes the state from t-1 to t
- C_t (k x n) describes how to map the state x_t to an observation z_t
- $\mathcal{E}_t \delta_t$ random variables representing process and measurement noise assumed independent and normally distributed with covariance R_t and Q_t respectively.

Linear Gaussian Systems

$$x_{t} = A_{t}x_{t-1} + B_{t}u_{t} + \mathcal{E}_{t}$$

$$u_{t-1} \qquad u_{t} \qquad u_{t+1} \qquad \dots$$

$$x_{t-1} \qquad x_{t} \qquad x_{t+1} \qquad \dots$$

$$z_{t-1} \qquad z_{t+1} = C_{t+1}x_{t+1} + \delta_{t+1}$$

Initial belief is normally distributed: $Bel(x_0) = N(\mu_0, \Sigma_0)$ Dynamics are linear function of state and control plus additive noise:

$$x_{t} = A_{t}x_{t-1} + B_{t}u_{t} + \mathcal{E}_{t} \implies p(x_{t} \mid u_{t}, x_{t-1}) = N(x_{t}; A_{t}x_{t-1} + B_{t}u_{t}, R_{t})$$

Observations are linear function of state plus additive noise:

$$z_t = C_t x_t + \delta_t \qquad \Rightarrow \qquad p(z_t \mid x_t) = N(z_t; C_t x_t, Q_t)$$

Linear Gaussian System: Prediction

Prediction:

$$\overline{Bel}(x_{t}) = \int p(x_{t} | u_{t}, x_{t-1}) \cdot Bel(x_{t-1}) dx_{t-1} \\
\sim N(x_{t}; A_{t}x_{t-1} + B_{t}u_{t}, R_{t}) \sim N(x_{t-1}; \mu_{t-1}, \Sigma_{t-1})$$

$$\overline{Bel}(x_{t}) = \eta \int \exp\left\{-\frac{1}{2}(x_{t} - A_{t}x_{t-1} - B_{t}u_{t})^{T} R_{t}^{-1}(x_{t} - A_{t}x_{t-1} - B_{t}u_{t})\right\} \\
\exp\left\{-\frac{1}{2}(x_{t-1} - \mu_{t-1})^{T} \Sigma_{t-1}^{-1}(x_{t-1} - \mu_{t-1})\right\} dx_{t-1}$$

$$\overline{Bel}(x_{t}) = \left\{\overline{\mu}_{t} = A_{t}\mu_{t-1} + B_{t}u_{t} \right\}$$

$$Closed form prediction step$$

Linear Gaussian System: Observation

Update:
$$Bel(x_t) = \eta \quad p(z_t | x_t) \quad \cdot \quad \overline{bel}(x_t)$$

~ $N(z_t; C_t x_t, Q_t) \quad \sim N(x_t; \overline{\mu}_t, \overline{\Sigma}_t)$

$$Bel(x_t) = \eta \exp\left\{-\frac{1}{2}(z_t - C_t x_t)^T Q_t^{-1}(z_t - C_t x_t)\right\} \exp\left\{-\frac{1}{2}(x_t - \overline{\mu}_t)^T \overline{\Sigma}_t^{-1}(x_t - \overline{\mu}_t)\right\}$$

$$Bel(x_t) = \begin{cases} \mu_t = \overline{\mu}_t + K_t(z_t - C_t \overline{\mu}_t) \\ \Sigma_t = (I - K_t C_t) \overline{\Sigma}_t \end{cases}$$

with
$$K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$$

Kalman Filter Algorithm

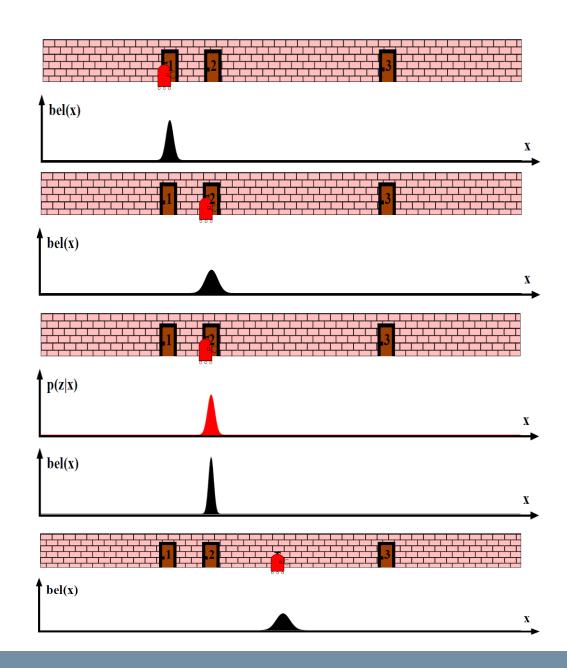
Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): Prediction:

$$\mu_t = A_t \mu_{t-1} + B_t u_t$$
$$\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$$

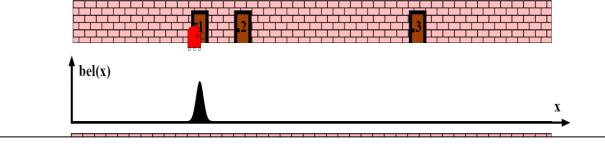
Correction:

$$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$
$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$
$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

Return μ_t , Σ_t



Kalman Filter Algorithm



Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

Prediction:

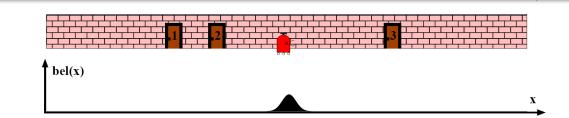
$$\mu_t = A_t \mu_{t-1} + B_t u_t$$
$$\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R$$

Correction:

$$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$
$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$
$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

Return μ_t , Σ_t

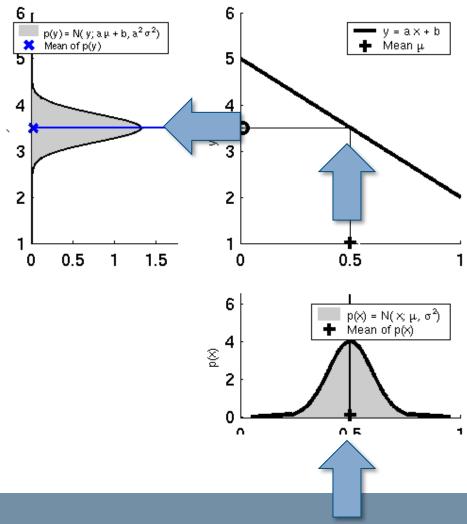
- Polynomial in measurement dimensionality k and state dimensionality n: O(k^{2.376} + n²)
- Optimal for linear Gaussian systems ☺
- Most robotics systems are nonlinear ☺
- It represents unimodal distributions $\ensuremath{\mathfrak{S}}$



How to Deal with Non Linear Dynamic Systems?

Gaussian noise in linear systems

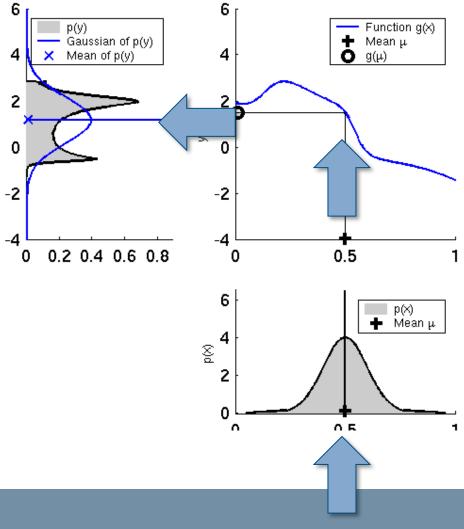
$$x_{t} = A_{t}x_{t-1} + B_{t}u_{t} + \mathcal{E}_{t}$$
$$z_{t} = C_{t}x_{t} + \delta_{t}$$



How to Deal with Non Linear Dynamic Systems?

Gaussian noise in non-linear systems

$$x_t = g(u_t, x_{t-1})$$
$$z_t = h(x_t)$$



POLITECNICO MILANO 1863

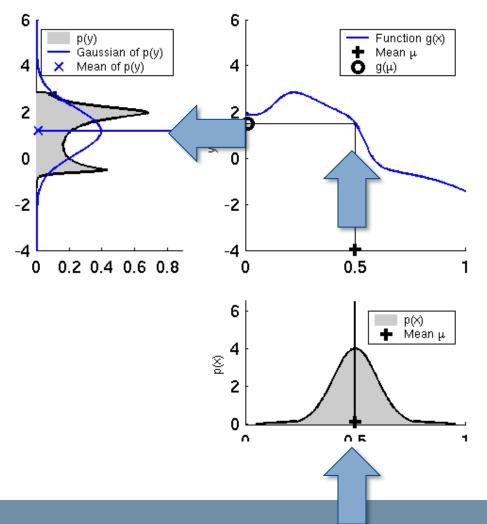
Gaussian noise in non-linear systems

$$x_t = g(u_t, x_{t-1})$$
$$z_t = h(x_t)$$

Prediction:

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$
$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + G_{t} (x_{t-1} - \mu_{t-1})$$

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$



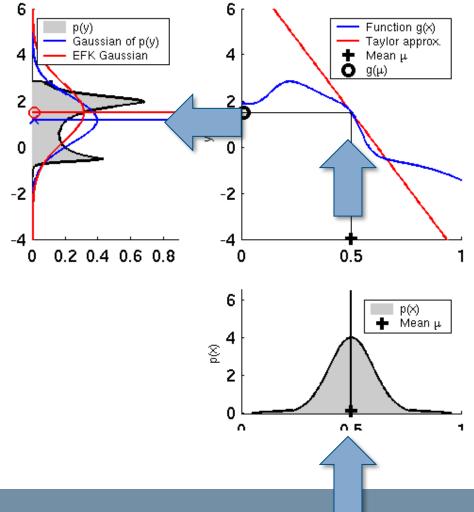
Gaussian noise in non-linear systems

$$x_t = g(u_t, x_{t-1})$$
$$z_t = h(x_t)$$

Prediction:

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$
$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + G_{t} (x_{t-1} - \mu_{t-1})$$

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$



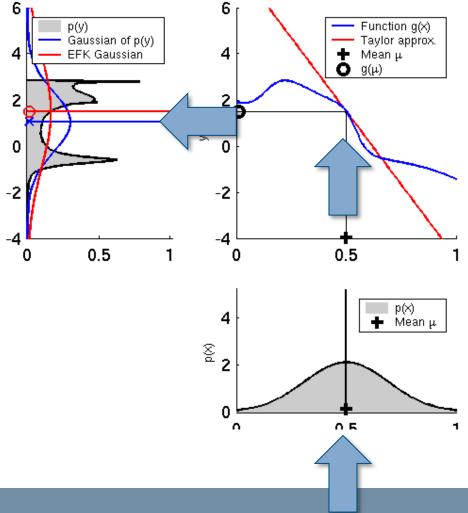
Gaussian noise in non-linear systems

$$x_t = g(u_t, x_{t-1})$$
$$z_t = h(x_t)$$

Prediction:

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$
$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + G_{t} (x_{t-1} - \mu_{t-1})$$

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$



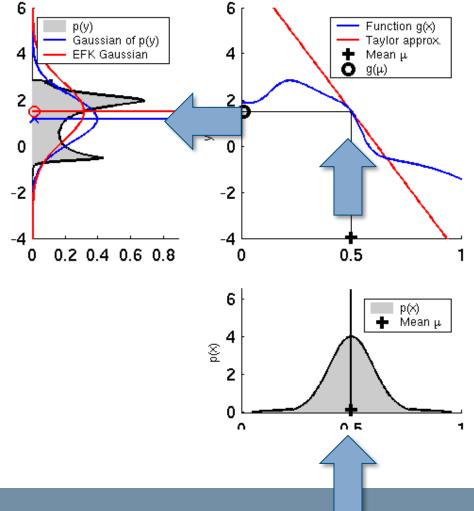
Gaussian noise in non-linear systems

$$x_t = g(u_t, x_{t-1})$$
$$z_t = h(x_t)$$

Prediction:

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$
$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + G_{t} (x_{t-1} - \mu_{t-1})$$

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$



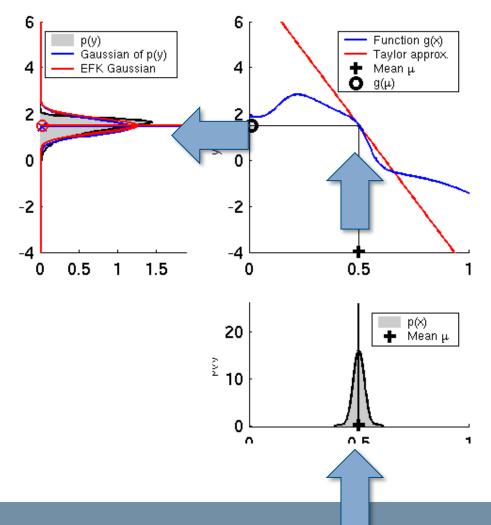
Gaussian noise in non-linear systems

$$x_t = g(u_t, x_{t-1})$$
$$z_t = h(x_t)$$

Prediction:

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$
$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + G_{t} (x_{t-1} - \mu_{t-1})$$

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$



EKF Algorithm

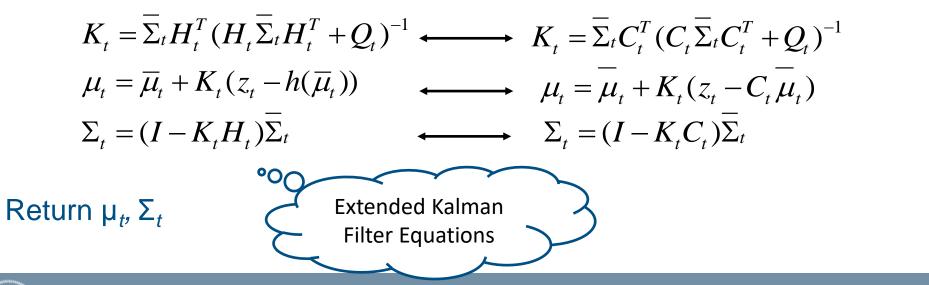
Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

Prediction:

$$\overline{\mu}_{t} = g(\mu_{t}, \mu_{t-1}) \qquad \longleftrightarrow \qquad \overline{\mu}_{t} = A_{t}\mu_{t-1} + B_{t}\mu_{t}$$

$$\overline{\Sigma}_{t} = G_{t}\Sigma_{t-1}G_{t}^{T} + R_{t} \qquad \longleftrightarrow \qquad \overline{\Sigma}_{t} = A_{t}\Sigma_{t-1}A_{t}^{T} + R_{t}$$
Linear form equations

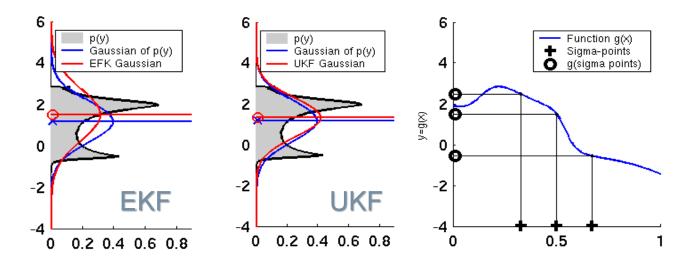
 $G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} \quad H_{t} = \frac{\partial h(\overline{\mu}_{t})}{\partial x_{t-1}}$



EKF and Friends

Extended Kalman Filter:

- Polynomial in measurement k and state n dimensionality: O(k^{2.376} + n²)
- Not optimal and can diverge if nonlinearities are large!
- Works surprisingly well even when all assumptions are violated!
- There are possible alternative like the Unscented Kalman Transform ...



Bayes Filter Algorithm

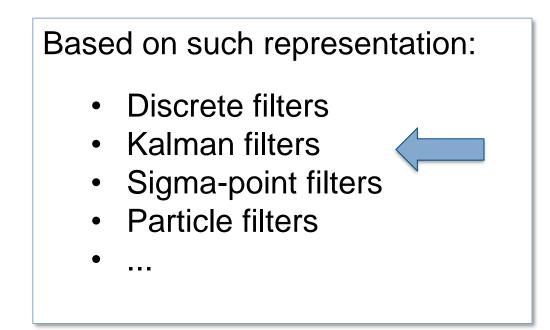
Algorithm Bayes_filter(Bel(x), d):

 $Bel(x_t|m) = \eta \ P(z_t|x_t,m) \int P(x_t|u_t, x_{t-1},m) \ Bel(x_{t-1}|m) \ dx_{t-1}$ How to represent such belief?

if *d* is a perceptual data item *z* then For all *x* do

 $Bel'(x) = P(z \mid x)Bel(x)$ Normalize *Bel'(x)* else if *d* is an action data item *u* then For all *x* do $Bel'(x) = \int P(x \mid u, x') Bel(x') dx'$

return *Bel'(x)*



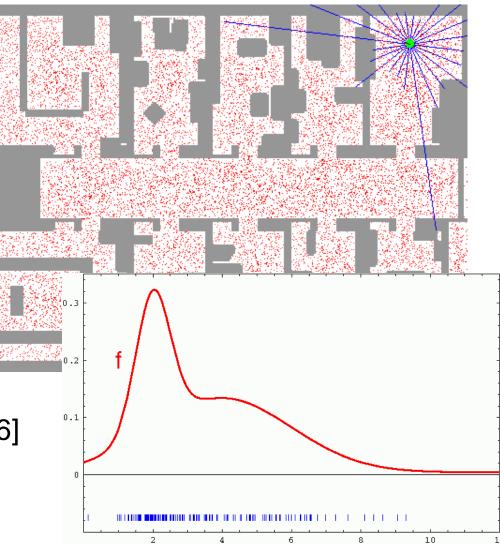
Particle Filters

Represent belief by random samples

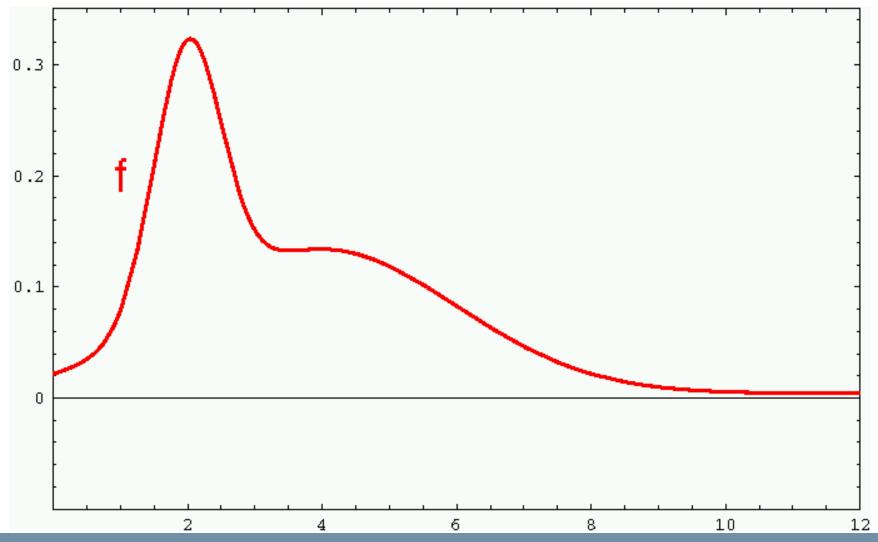
Estimation of non-Gaussian, nonlinear processes

- Monte Carlo filter
- Survival of the fittest
- Condensation
- Bootstrap filter
- Particle filter

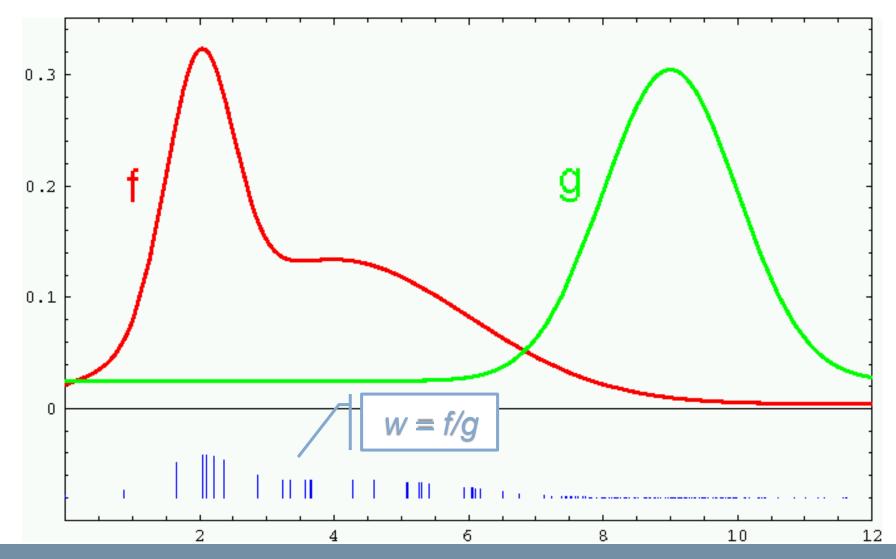
Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96] Computer vision: [Isard and Blake 96, 98] Dynamic Bayesian Networks: [Kanazawa et al., 95]



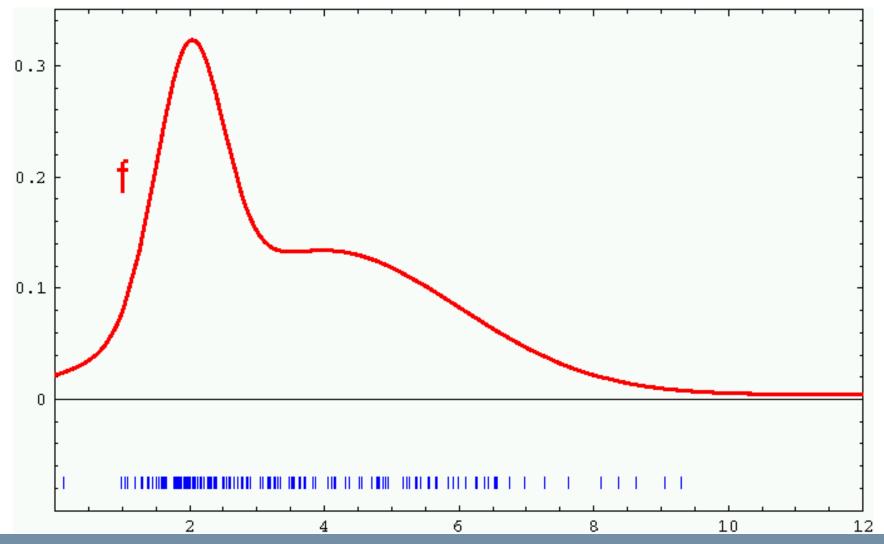
Importance Resampling



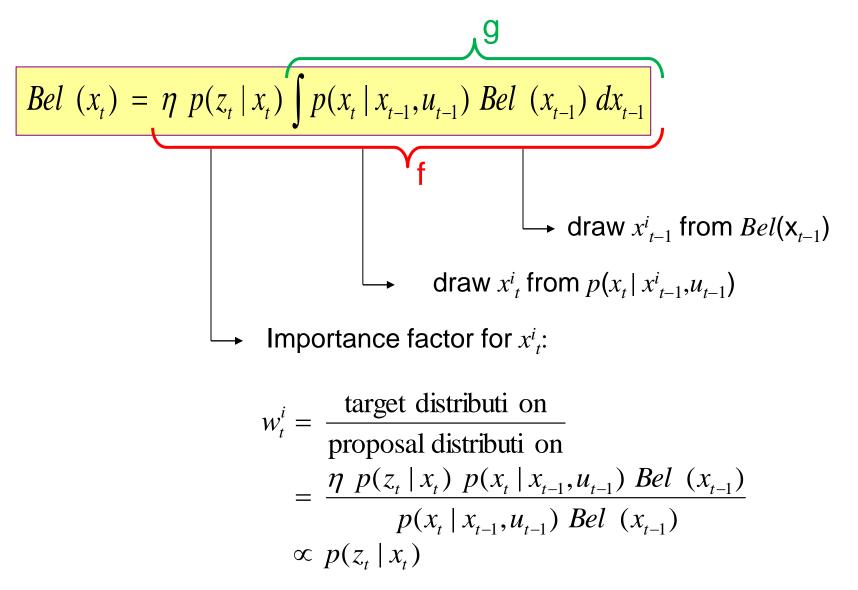
Importance Resampling



Importance Resampling (with smoothing)

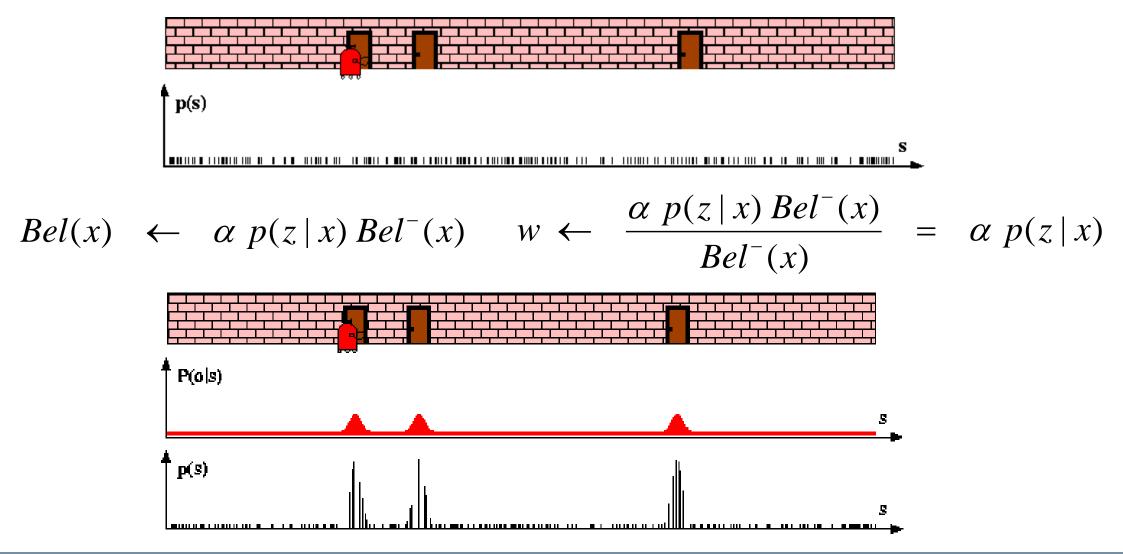


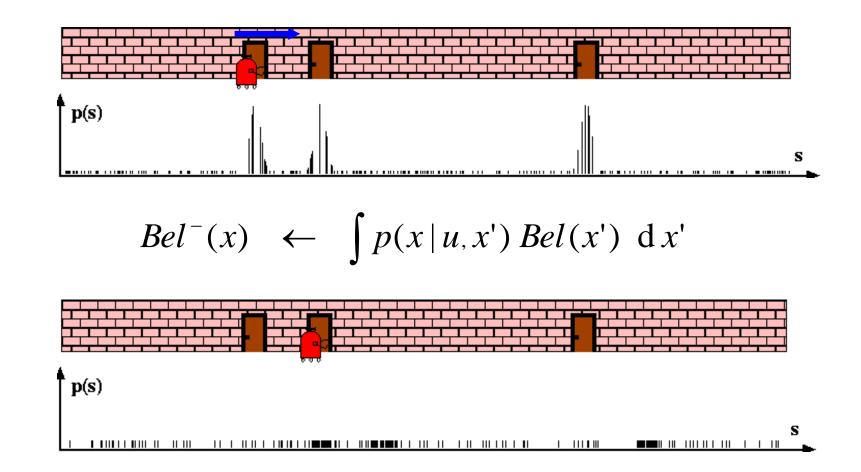
Particle Filter Algorithm

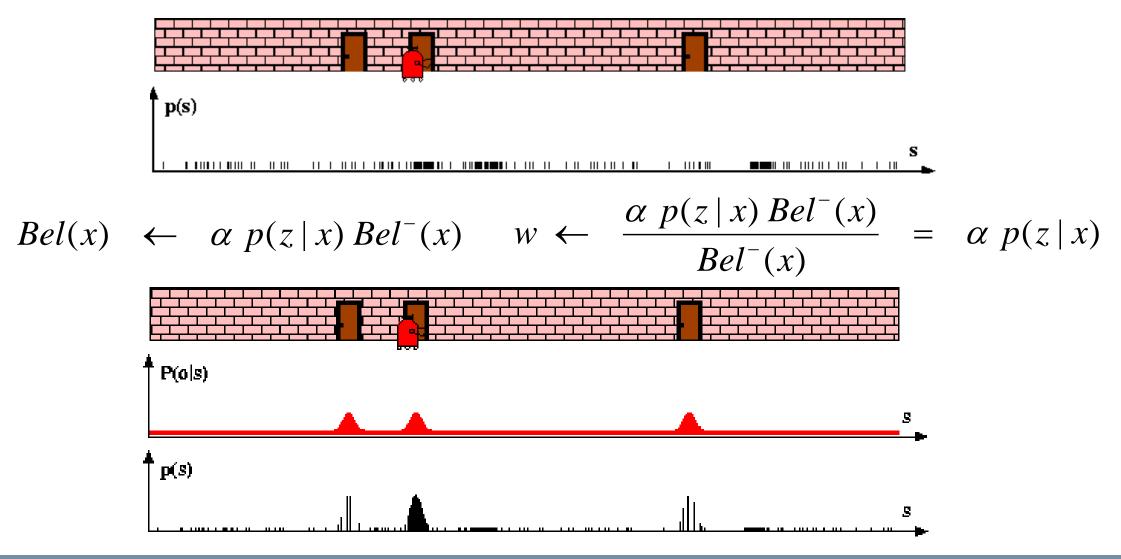


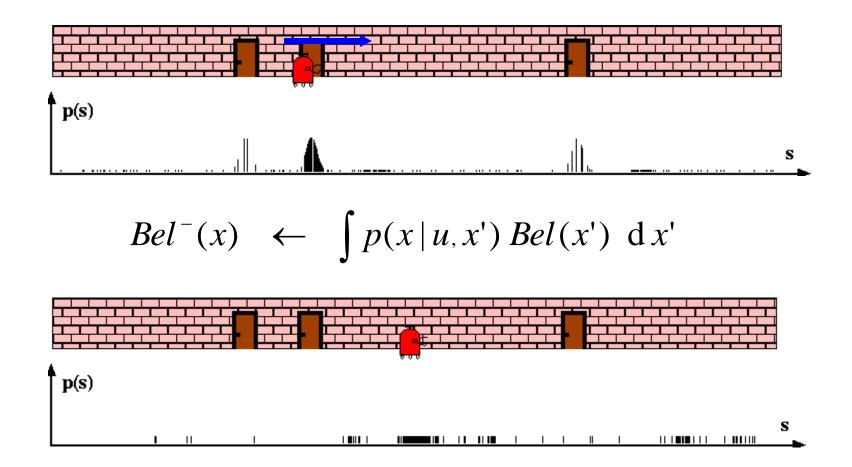
Particle Filter Algorithm

Algorithm **particle_filter**(S_{t-1} , u_{t-1} , z_t): $S_t = \emptyset, \quad \eta = 0$ **For** i = 1...nGenerate new samples Sample index j(i) from the discrete distribution given by w_{t-1} Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1} $w_t^i = p(z_t \mid x_t^i)$ *Compute importance weight* $\eta = \eta + w_t^i$ Update normalization factor $S_t = S_t \cup \{< x_t^i, w_t^i > \}$ Insert **For** i = 1...n $w_t^i = w_t^i / \eta$ Normalize weights

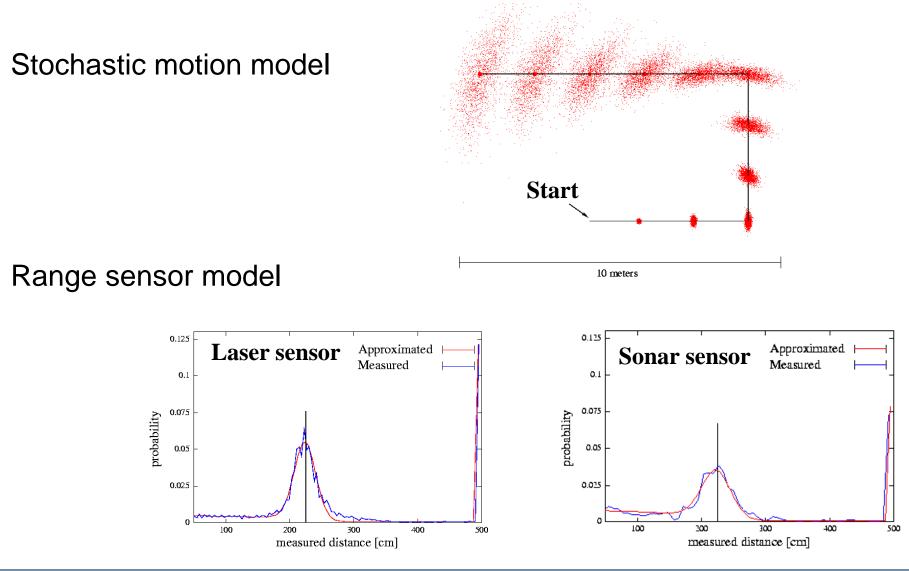




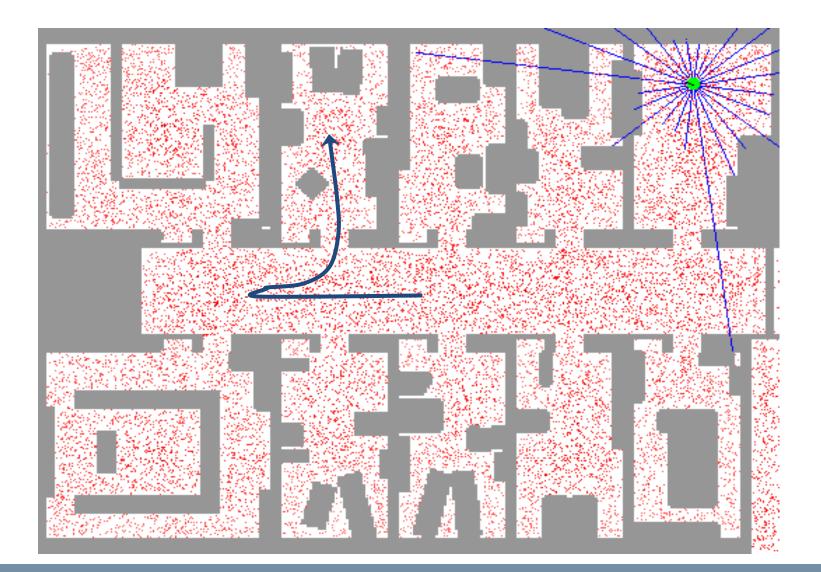


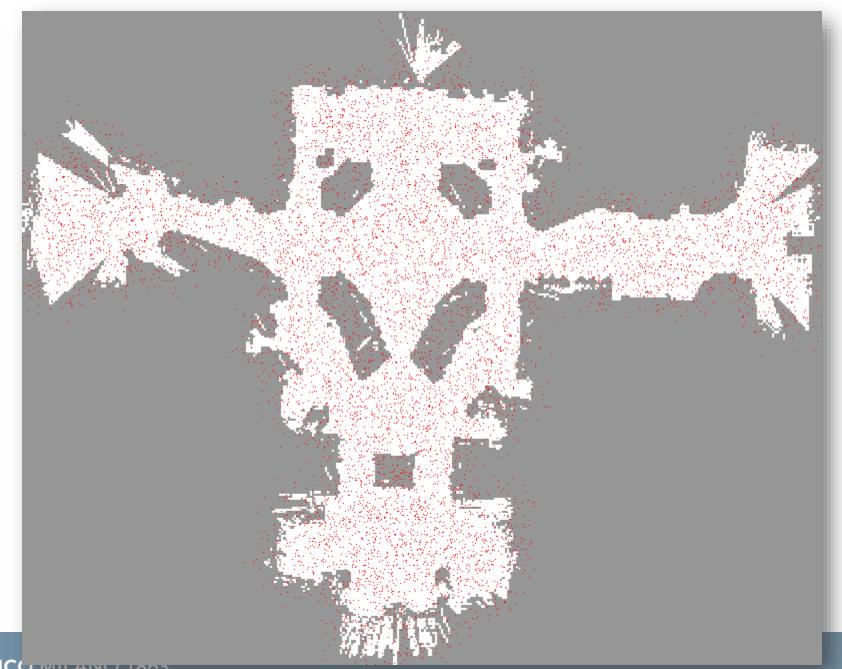


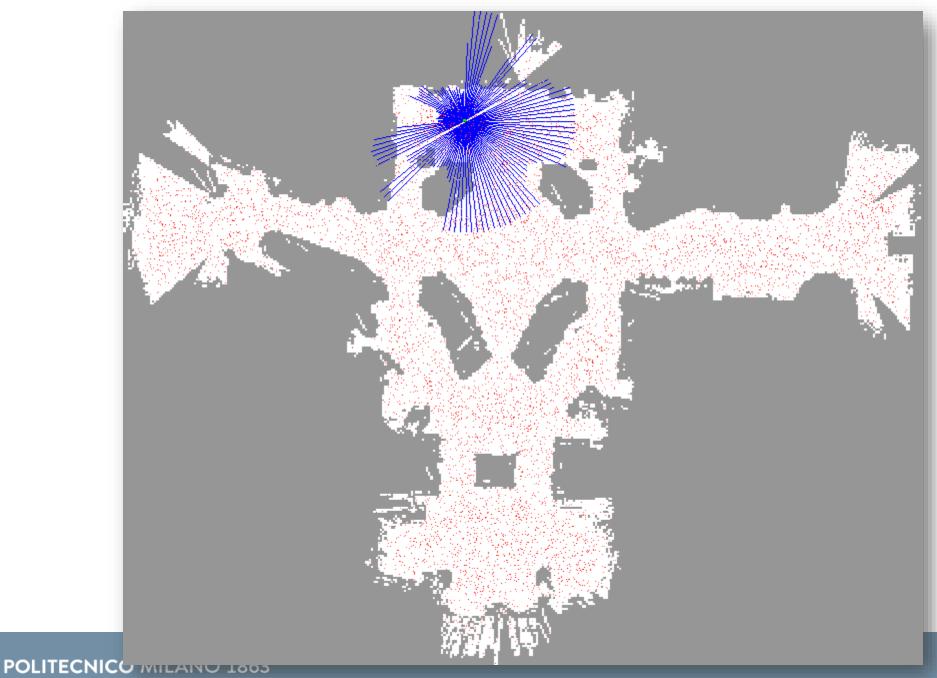
Monte Carlo Localization with Laser

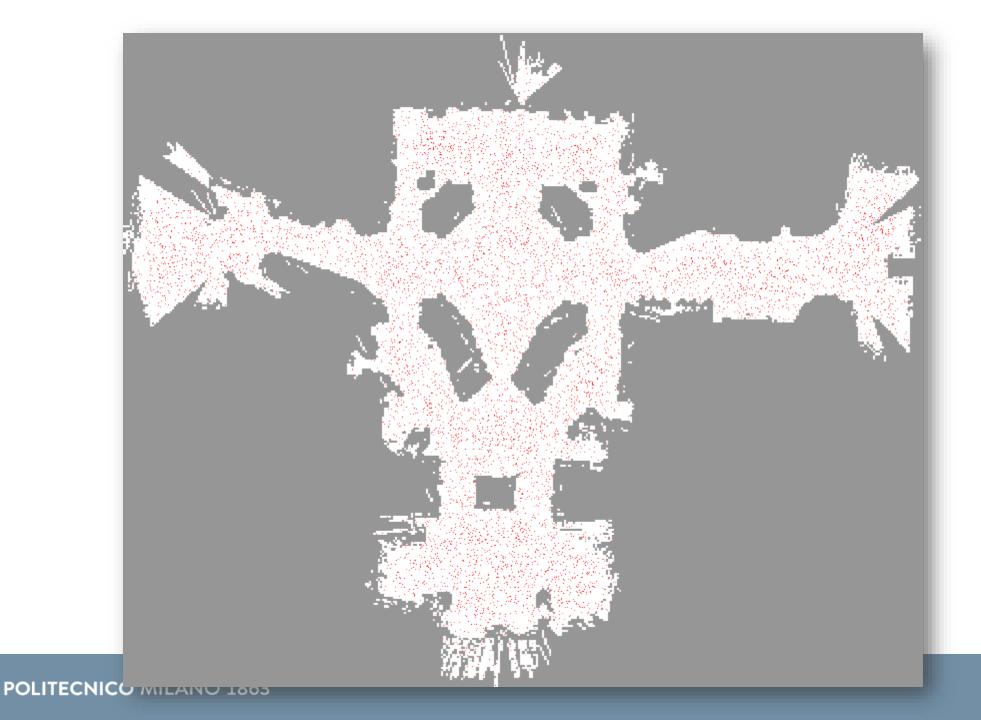


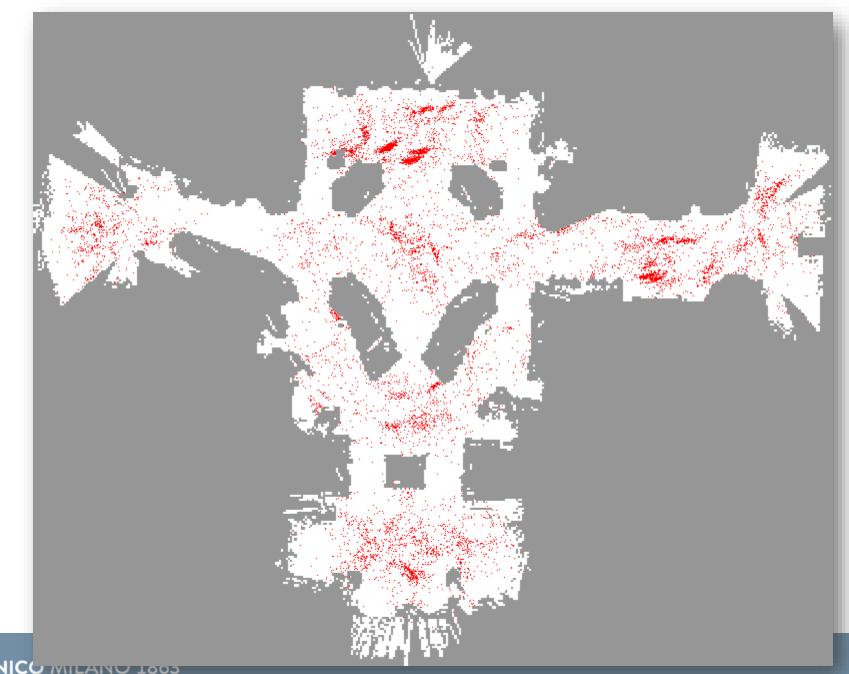
Sample-based Localization (sonar)

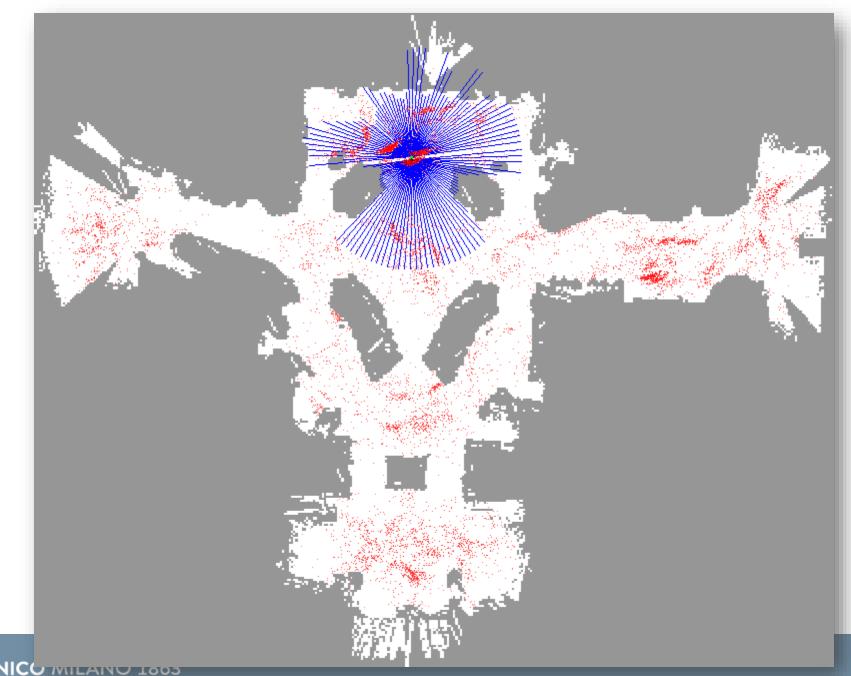


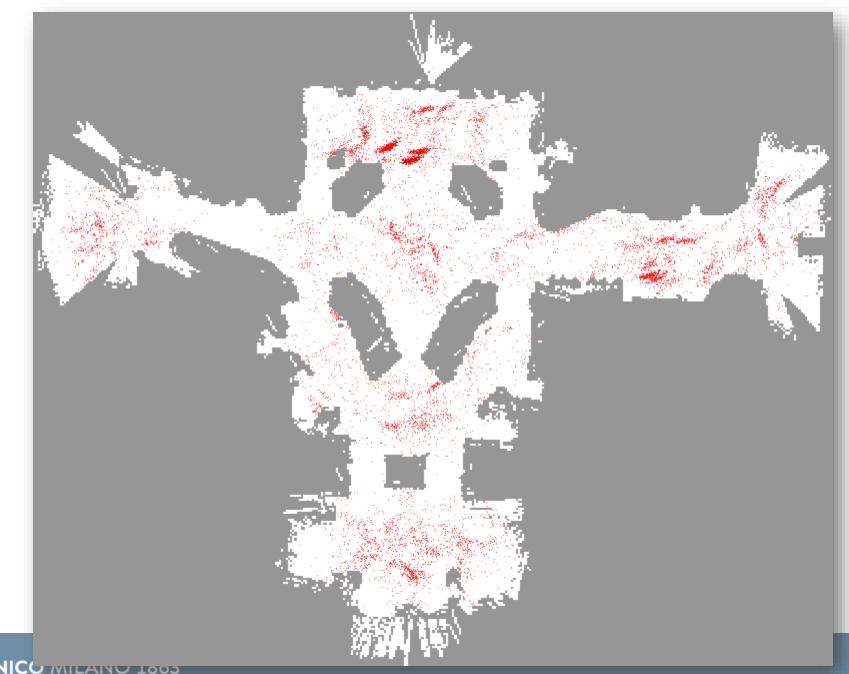


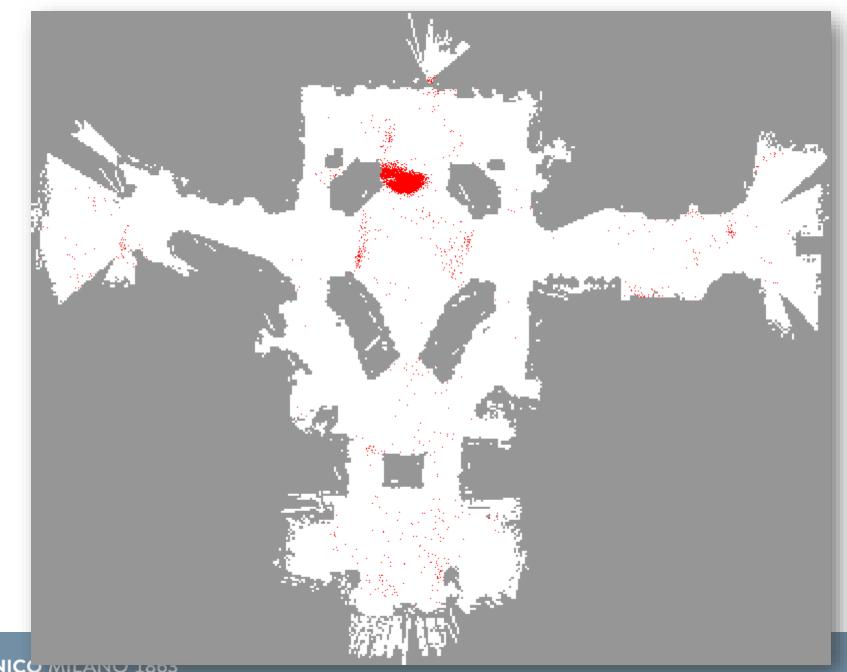


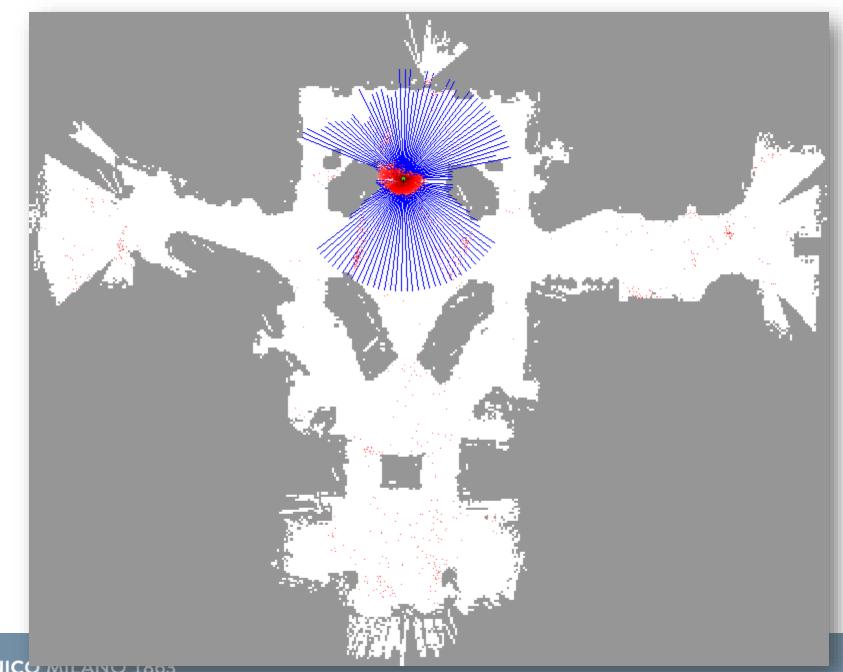


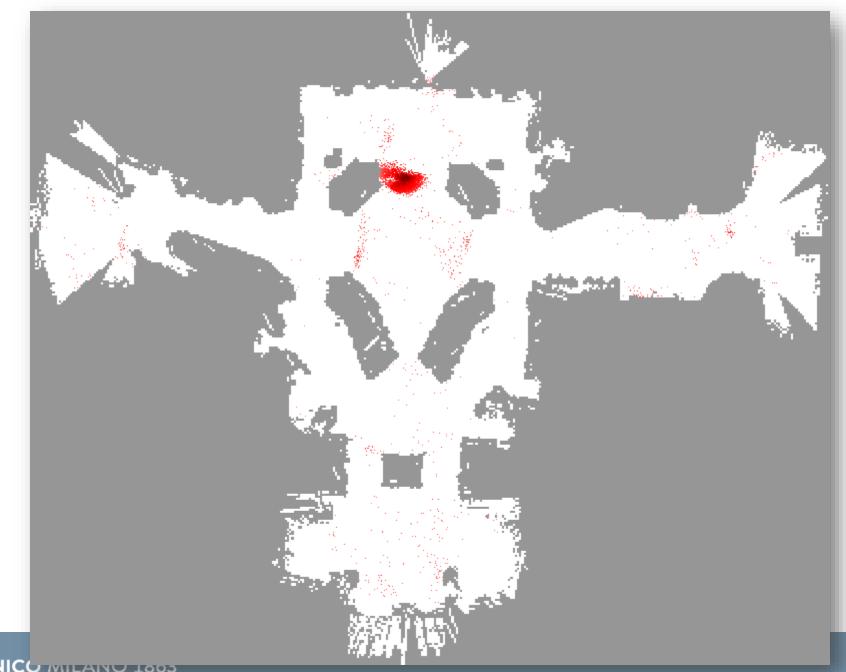


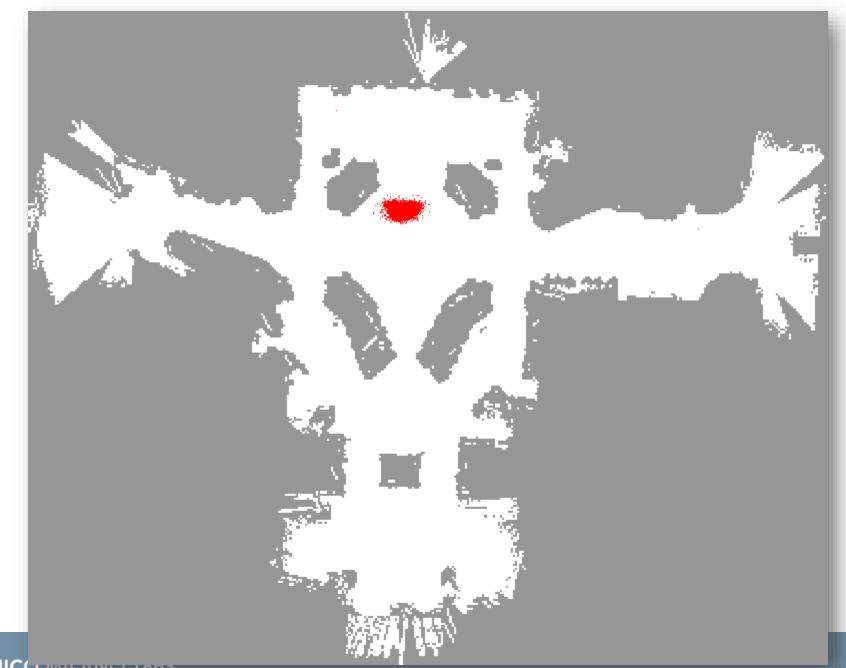


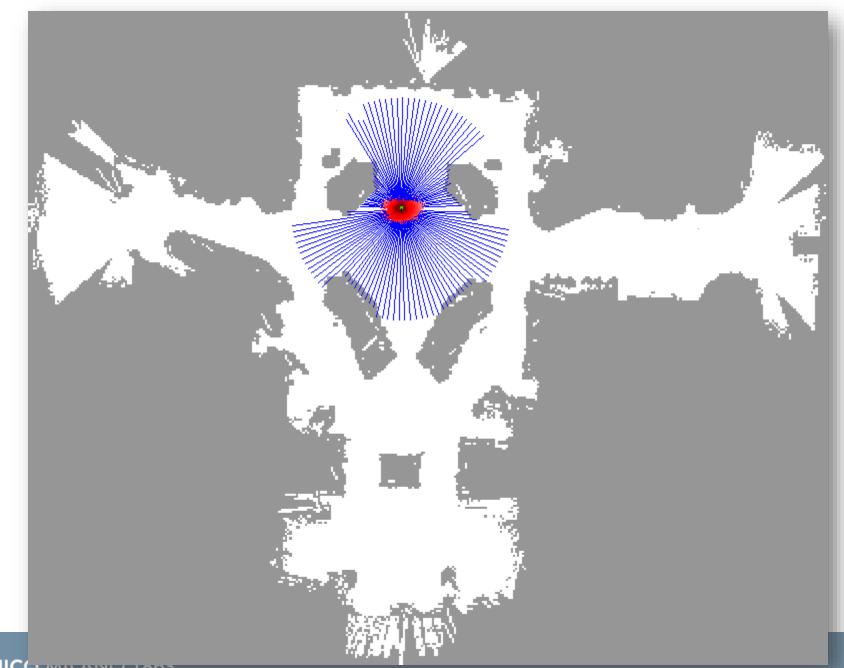


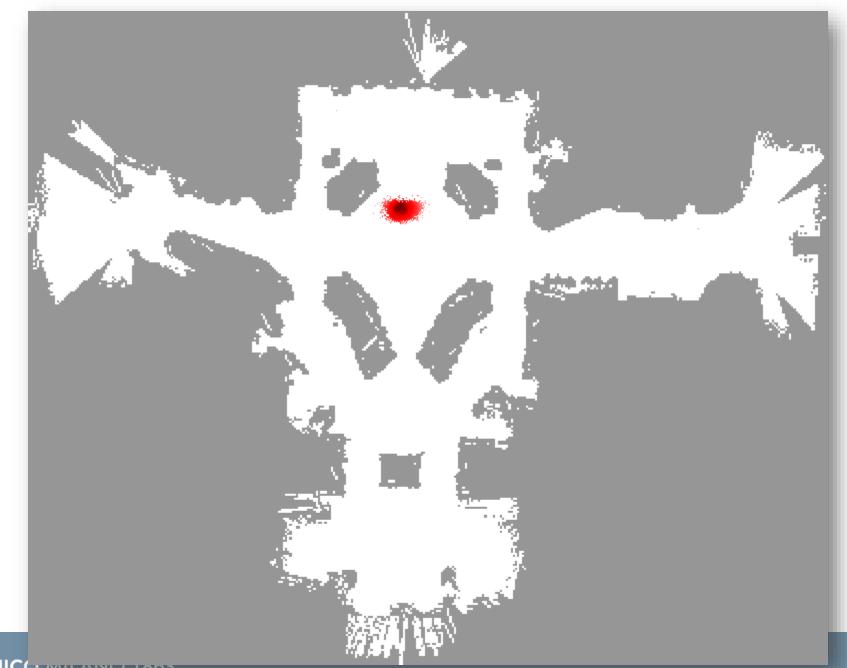


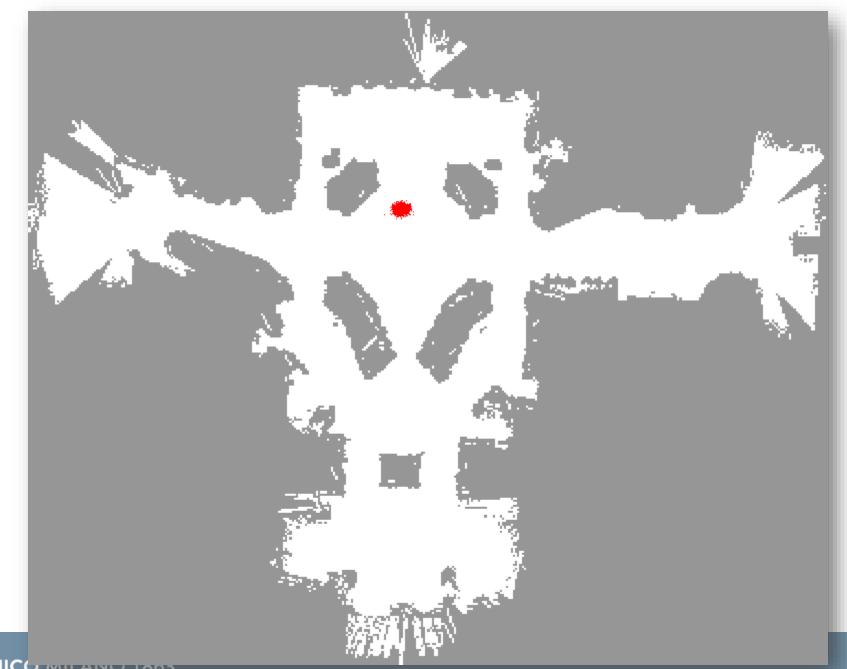


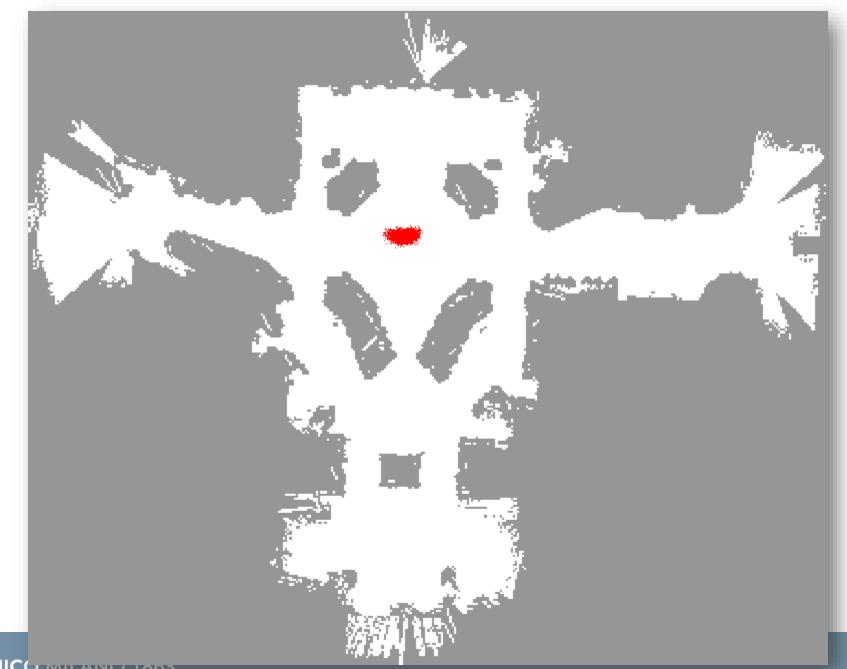


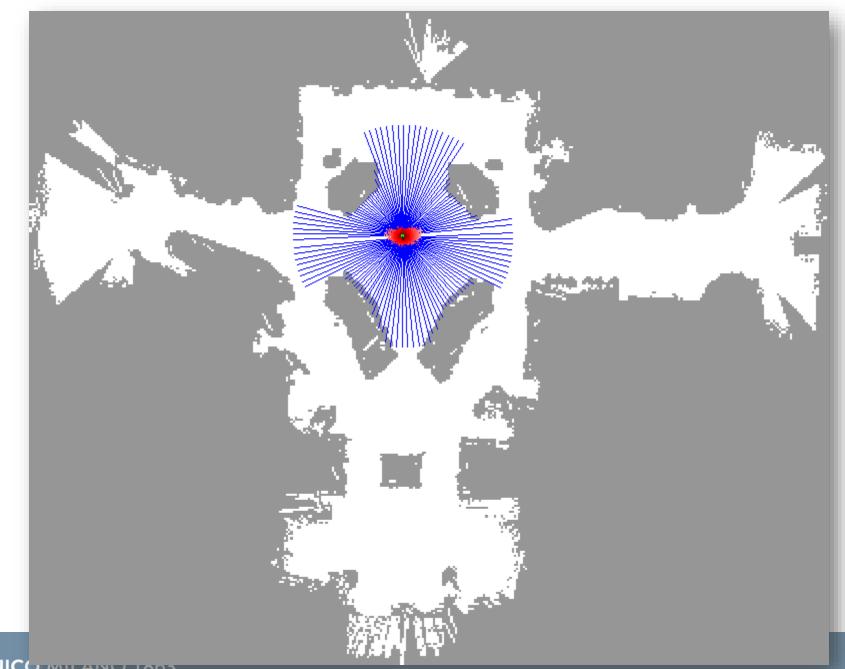


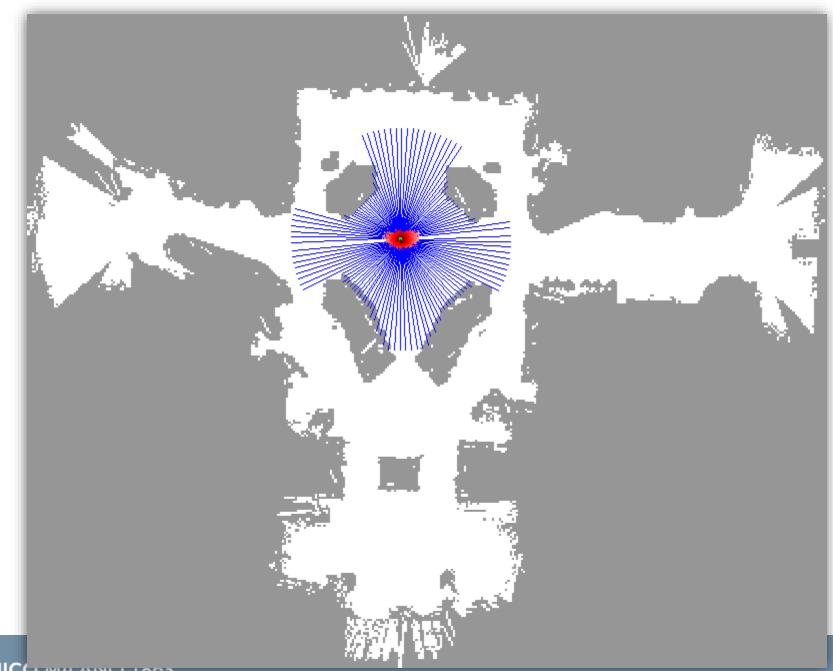




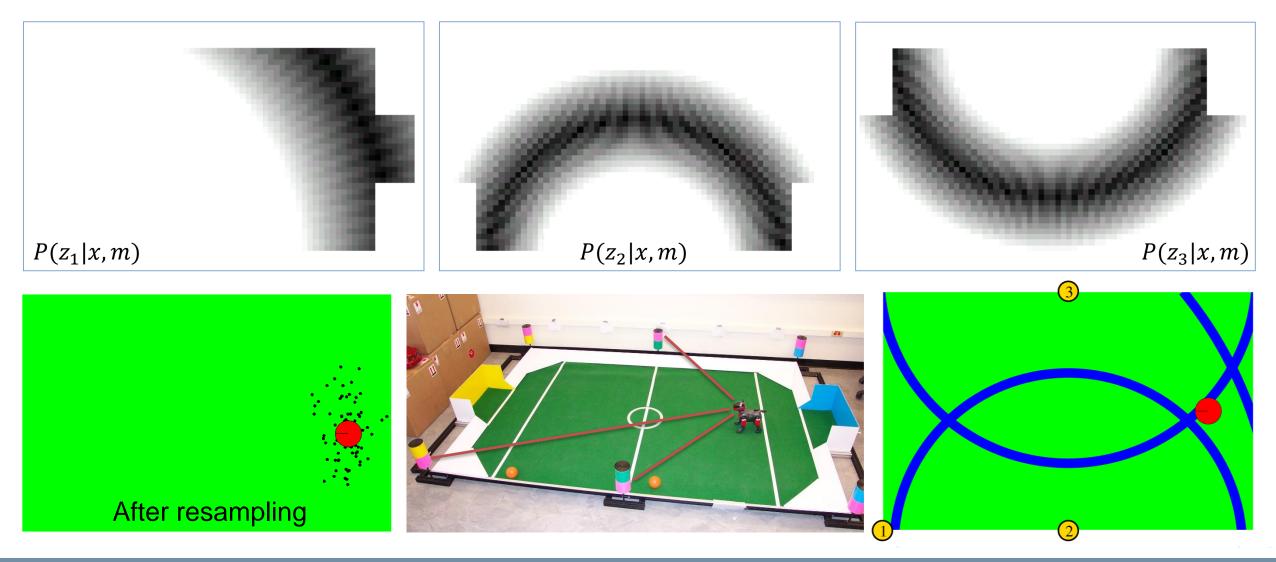




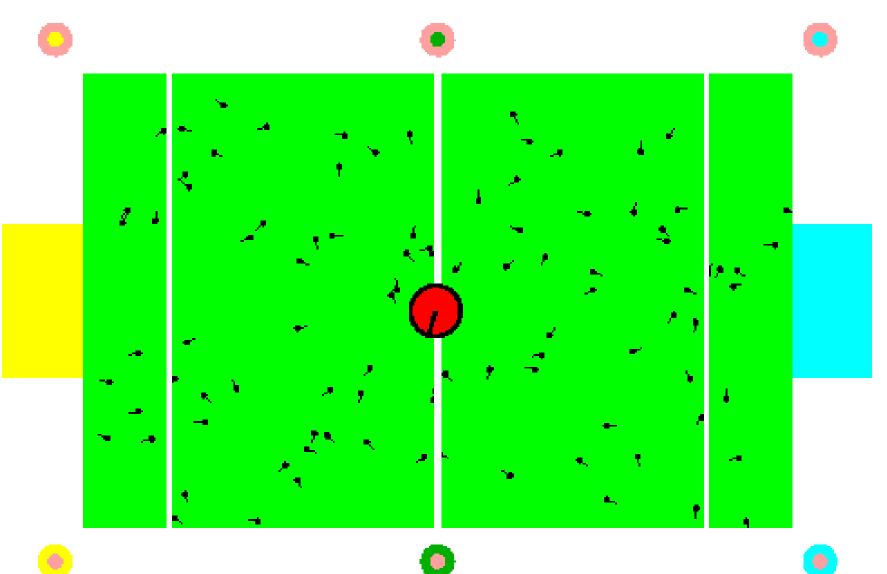




RoboCup Example



Localization for AIBO robots



POLITECNICO MILANO 1863

Project Minerva

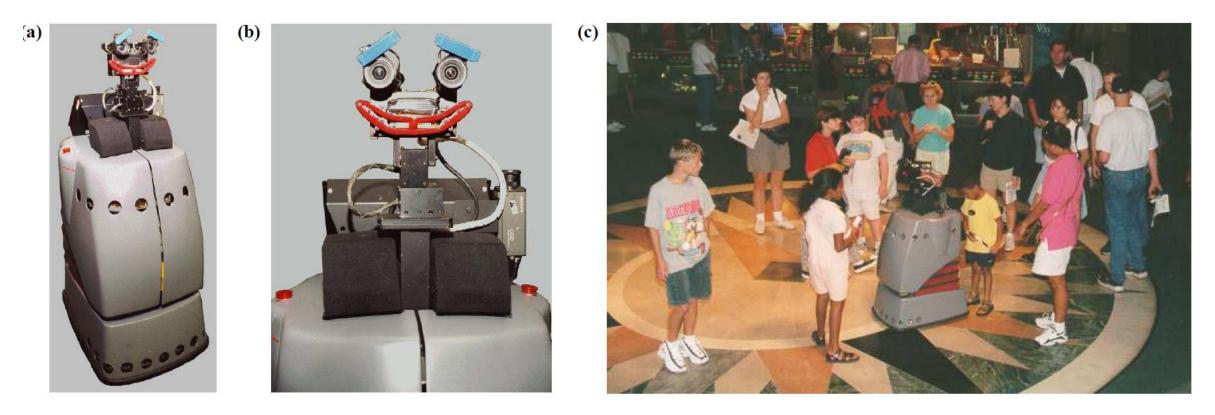
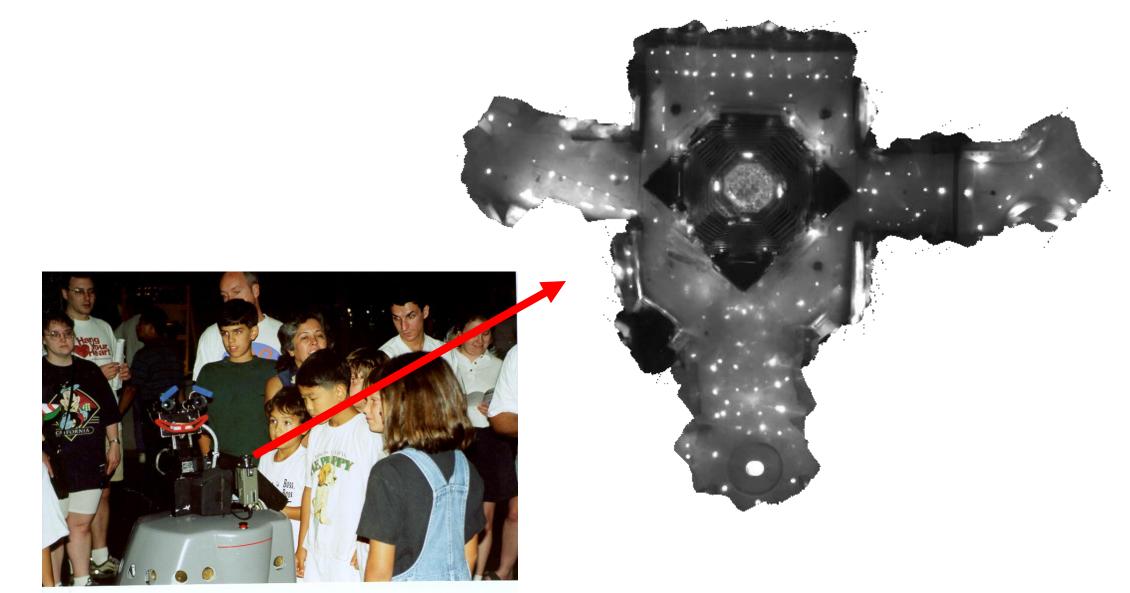
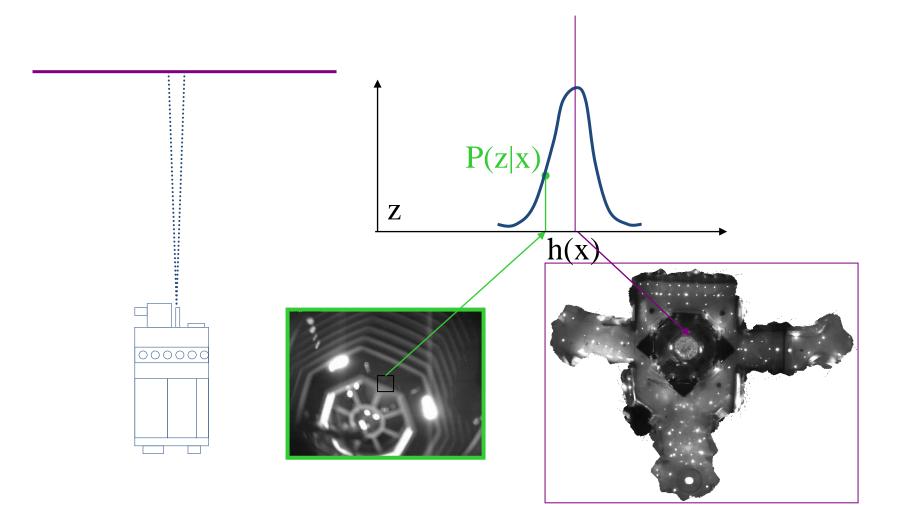


Figure 1: (a) Minerva. (b) Minerva's motorized face. (c) Minerva gives a tour in the Smithsonian's National Museum of American History.

Using Ceiling Maps for Localization

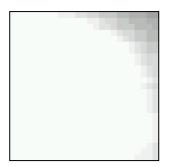


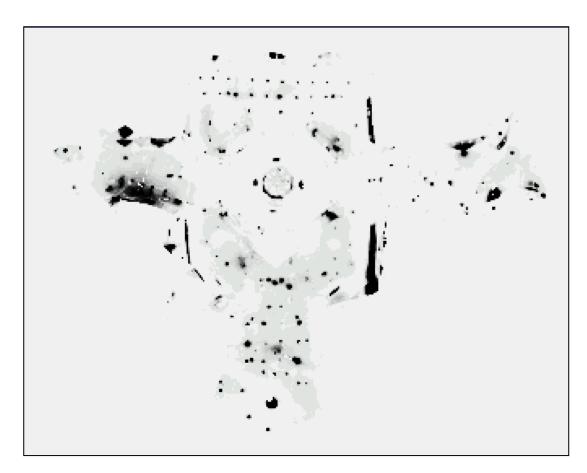
Vision-based Localization



Under a Light

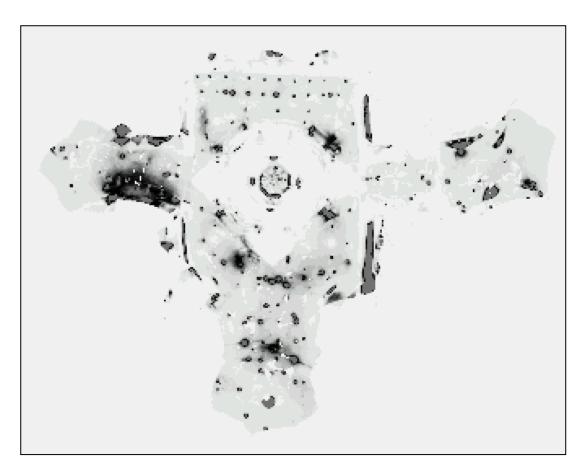
Measurement z:





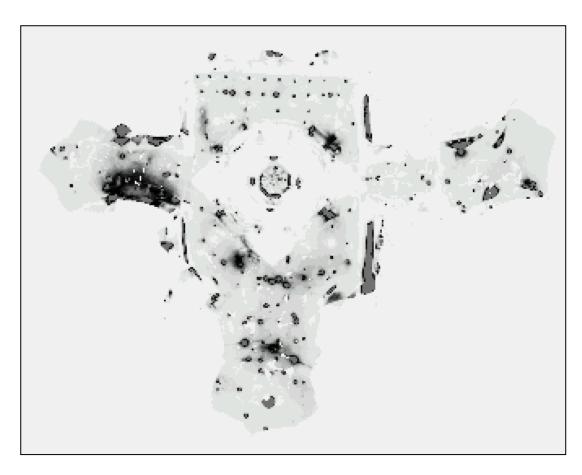
Next to a Light

Measurement z:



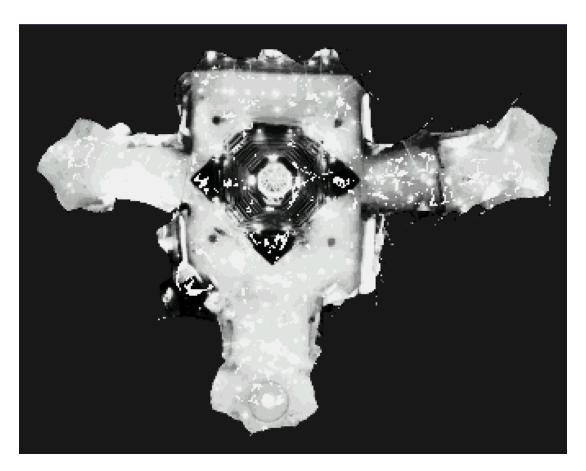
Next to a Light

Measurement z:

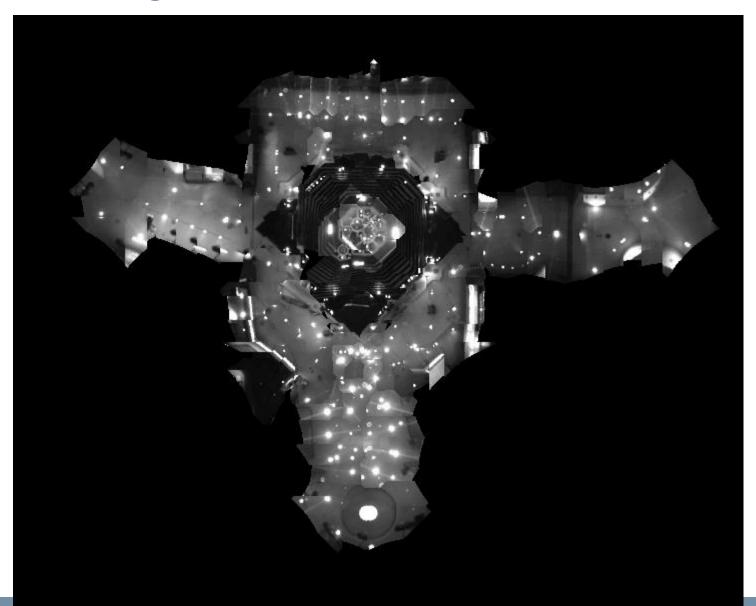


Elsewhere

Measurement z:



Global Localization Using Vision



POLITECNICO MILANO 1863