
Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

1

The Utility Metric: A Novel Method to Assess the
Overall Performance of Discrete Brain-Computer

Interfaces
Bernardo Dal Seno, Matteo Matteucci and Luca Mainardi

Abstract— A relevant issue in a brain-computer interface
(BCI) is the capability to efficiently convert user intentions into
correct actions, and how to properly measure this efficiency.
Usually, the evaluation of a BCI system is approached through
the quantification of the classifier performance, which is often
measured by means of the information transfer rate (ITR).
A shortcoming of this approach is that the control interface
design is neglected, and hence a poor description of the overall
performance is obtained for real systems. To overcome this
limitation, we propose a novel metric based on the computation
of BCI Utility. The new metric can accurately predict the overall
performance of a BCI system, as it takes into account both the
classifier and the control interface characteristics. It is therefore
suitable for design purposes, where we have to select the best
options among different components and different parameters
setup. In the paper, we computeUtility in two scenarios, a P300
speller and a P300 speller with an Error Correction System
(ECS), for different values of accuracy of the classifier and recall
of the ECS. Montecarlo simulations confirm that Utility predicts
the performance of a BCI better than ITR.

Index Terms—brain-computer interface (BCI), BCI perfor-
mance, P300 speller, error potential

I. I NTRODUCTION

A Brain-Computer Interface (BCI) is a direct communica-
tion pathway between the brain and an external device. It

bypasses any muscle or nerve mediation and interprets human
commands by picking up (and analyzing) signals generated by
the brain activity [1]. A relevant issue for this kind of interface
is related to the capability to convert efficiently user intentions
into correct actions, and how best to assess such efficiency.

The schematic architecture of a BCI system is depicted in
Fig. 1: the acquired signal (typically the EEG for non-invasive
BCI) is processed, and its relevant features extracted. These
features are then used to feed a classifier with the aim of
discriminating among a discrete set of options. The selected
option is then interpreted and the desired action generated.
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Figure 1. BCI architecture and performance measurement. Different metrics
measure performance at different points.

Two functional blocks can be recognized (see also [2], [3]):the
Transducer (TR) and the control interface (CI). Their outputs
are evidenced by blocks ‘A’ and ‘B’, respectively. Both the TR
and CI blocks contribute to the overall system performance.

The kind of recorded signal, the way it is processed, the
type of classifier and the CI strategy are only a few examples
of the variety of design options in the implementation of a
BCI system. Evaluation criteria are therefore needed to select
among available options and to identify the best design.

Usually, the evaluation of a BCI system is approached
through the quantification of the classifier performance (i.e.,
the comparison among systems is performed at level of block
‘A’ in Fig. 1). A series of evaluation criteria has been proposed
including the classification accuracy (or, equivalently, the
error rate), Cohen’s Kappa coefficient [4], and indexes based
on mutual information, such as the widely-used information
transfer rate (ITR) [5]. A detailed overview of these metrics
can be found in [6]. Unfortunately, these metrics do not take
CI into account and therefore they are poorly descriptive of
the overall BCI performances. In addition, they are of limited
use for design purposes, as they do not provide any clue to
select among different CIs, among different error correction
strategies, or to define the best combination of TR and CI.

The problem of finding an indicator able to predict the per-
formance of the whole BCI system was recently approached
in [3]. The authors illustrate that, in a copy spelling task,the
same TR when combined with different CIs, may generate
different performances. They also show that it is the combi-
nation of TR and CI that determines the system performance,
and they propose a metric that takes into account both the TR
and CI functioning. In this paper, we build upon our previous
work [7] and we generalize the metric proposed in [3] by
introducing the new concept ofUtility , a quantity related to
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the amount of (quantifiable) benefits obtained by the user when
a given BCI system is used. As the new metric depends on
both the TR performances and the CI strategy, it is a good
candidate to predict the overall BCI performance and to guide
the developer in the overall system optimization.

This paper is organized as follows: Section II briefly recalls
the most common metrics employed for the evaluation of BCI
performance, while in Section III the concept ofUtility is
introduced for a discrete-BCI system. In the next two sections,
Utility is used to evaluate the overall performance of a P300-
based speller with and without an error correction system:
We show that the new metrics can predict when (and at what
extent) an error-correction system improves the system per-
formance. In Section VI we report the results of Monte-Carlo
simulations, and we evidence the potentiality/advantagesof the
new metric compared to the ITR. Finally, some discussion and
conclusions are reported in Sections VII and VIII respectively.

II. M EASURING BCI PERFORMANCE

A set of metrics has been proposed in the literature to
asses the performance of a BCI system. Among them we
recall the classification accuracy, Cohen’s Kappa statistic, the
information transfer rate, and the more recent efficiency.

Classification accuracy, i.e., the fraction of examples cor-
rectly classified, is the simplest performance measure usedin
the BCI literature. Sometimes, the error rate is used instead,
but it is equivalent to accuracy, as the error rate is the fraction
of examples wrongly classified. They are both easy to compute
and to understand, but they present many shortcomings. They
do not make any distinction between different kinds of errors,
while different kinds of errors have different impact (cost) in
general. Moreover, classes that appear less frequently in the
data are weighted less in the accuracy computation, and this
is likely to lead to biased classifiers and biased evaluations.

The Cohen’s Kappa coefficient[4] is a way to express the
agreement between two classifications. This measure takes into
account the different frequencies for classes and also how
errors are distributed among classes, although its meaningis
not so explicit as accuracy.

Information transfer rate(ITR — sometimes simply called
bit rate) is a performance measure widely used in the litera-
ture [5], [8]. It has many advantages: It does not depend on
any particular protocol, it takes into account both the number
of choices and time, it is strongly theoretically grounded,and
it could be applied also to continuous ranges of choices [9].

A theoretical formula from information theory was derived
in [5] to compute the (mean) number of bits transferred per
trial in a BCI:

B = log2 N + p log2 p + (1 − p) log2

1 − p

N − 1
, (1)

whereN is the number of possible choices per trial, andp
is the accuracy of the BCI. When (1) is divided by the trial
duration,c, the mean number of bits transferred per time unit,
i.e., the Information Transfer Rate (ITR), is obtained:

ITR =
B

c
(2)

This formula is derived from Shannon’s theory [10], and it
represents a measure of themutual informationbetween the
user’s choice and the BCI selection, under the assumptions
that all choices convey the same amount of information (i.e.,
they are chosen by the user with equal probability), thatp is
the same for all the possible choices, and that all the wrong
choices have equal probability. In other words, a BCI system
is seen as a noisy channel, in which noise is added every time
the system selects the wrong option.

According to Shannon’s noisy channel coding theorem [10],
it is possible to achieve an arbitrarily small error probability
in a communication on a noisy channel as long as the
information transfer rate does not go beyond a certain limit.
The maximum achievable transfer rate with no errors is the
mutual information, and this seems to justify the use of mutual
information in (1). The only problem is that Shannon proved
his famous theorem by transferring information embedded in
ever increasing blocks of bits, and in telecomunication very
complex error correction schemes have been devised in order
to get near Shannon’s limit. For a BCI, where a human subject
sits at one end of the noisy channel, it is not possible to
do anything complex, and the estimate given by the mutual
information can be very far from what can be achieved in
practice. In other words, (1) is a theoretical figure, which
may be unrealistic for measuring (or predicting) thereal
performance of practical BCI systems.

A further problem with (1) is that it does not take into
account how the BCI is implemented and, in particular, how
the output of the TR is interpreted by the CI. Even in an anal-
ysis like [11], where different metrics are compared through
simulated experiments, or like [12], where the performanceof
a BCI is analyzed as a parameter varies, the CI is not modeled.
There are alternative designs in which the CI can be built, but
ITR does not help in selecting the best combination of TR and
CI (as also underlined in [3]).

A modified version of the above relation was derived in [13]
when an error correction system (ECS) based on the detection
of Error Potentials (ErrP) is added to the BCI system. The
resulting formula is

B = pt ·

(

log2 N + p′ log2 p′ + (1 − p′) log2

1 − p′

N − 1

)

, (3)

wherept = p·rC+(1−p) (1−rE) andp′ = p·rE/pt, and where
rE is the recall for errors (the fraction of times that an actual
error is recognized by the error classifier) andrC is the recall
for correct trials (the fraction of times that a correctly spelled
letter is recognized by the error classifier). In other words,
they derive the new accuracyp′ for the system after discarding
outcomes rejected by the ErrP detection, and use it in (1); the
factor pt takes into account the fact that discarded outcomes
do not contribute to the information transfer. Equation (3)is
subject to the same limitations of (1), though.

All the above criticisms to the ITR have been addressed
in [3], where also a realistic metric measuring the efficiency
of a BCI is proposed. Such efficiency represents the inverse of
the expected time to issue a meaningful command through the
BCI, but it does not contemplate the possibility that different
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Figure 2. The benefit function for a discrete BCI system. The function is
a series of delta functions, because a benefit is available only when a certain
selection is made.

commands may have different benefits (or costs, if they cannot
be undone).

III. U TILITY

We approach the quantification of a BCI system perfor-
mance from a different perspective, more user-centered, and
we introduce the concept ofUtility . If a BCI is supposed to
serve the user as a tool, the user should get some kind of
benefit when the BCI works correctly. We can formalize this
concept by definingUtility as the expected average benefit (for
the user) over time:

U = E

[

lim
T→∞

∫ T

0
b(t)dt

T

]

, (4)

where b(t) is a benefit function, which assumes positive (or
negative) values depending on whether the choice at timet
conforms to (or contradicts) the user intention.

Let us consider the case of a discrete BCI, i.e., a BCI system
whose output is defined only at discrete time instants. In this
situation, the benefit function will be discrete, and definedonly
in the time-instanttk when an output is generated. In fact,
a quantifiable benefit can be defined only when an output is
selected (e.g., a letter printed by the speller, or a target reached
on the screen). The situation is described in Fig. 2, and in
mathematical terms we may write

b(t) =

K
∑

k=1

bkδ(t − tk) , (5)

where K is the number of outputs in the interval[0, T ].
Substituting Equation (5) into Equation (4) and observing that
T =

∑K

k=1 ∆tk, where ∆tk = tk − tk−1 for k > 1, and
∆t1 = t1, we may write

U = E

[

lim
T→∞

∑K

1

∫ T

0
bkδ(t − tk)dt

T

]

= E

[

lim
K→∞

∑K

1 bk
∑K

k=1 ∆tk

]

. (6)

For a stochastic variablen generated by an ergodic pro-
cess [14], the following relation holds:

lim
K→∞

∑K

k=1 nk

K
= E[n] . (7)

This can be used in (6) to eliminate the limit and obtain a
formulation ofUtility valid for a discrete-BCI system:

U = E

[

E[bk]

E[∆tk]

]

=
E[bk]

E[∆tk]
. (8)

This formulation can be easily read as the ratio between the
average benefit (among all the possible discrete choices) and
the average time needed to get it. ThereforeUtility will be
higher for the BCI system that makes it possible to reach the
desired target (maximum benefit) in the shortest interval of
time.

IV. U TILITY IN A P300 SPELLER

In this section we derive an explicit formula ofUtility for
a P300 speller [15]. As our metric is dependent on the CI
strategy, we have to define how the interface works.

A. The P300-Speller design

We design the interface in a very simple and natural way:
At every trial the BCI selects a letter and displays it on the
screen. If the letter is correct, the user moves on to the next
letter, otherwise he/she has to “hit” the backspace symbol
to cancel the misspelled letter. Globally, the speller hasN
possible selections:N − 1 letters plus the backspace symbol.

The following general assumptions are also considered:

A1. the accuracyp of the system is constant over the trials,
thus no time-dependency is included in the model;

A2. the system has no memory, i.e., each trial is not influ-
enced by the result of the previous one.

Moreover, we make use of the same assumptions underlying
(1). All these assumptions are not required for the general
formulation ofUtility ; they just make the following derivation
simpler and let us concentrate on the main issues.

B. Utility computation

By using (8), theUtility for a P300 speller is obtained as
the average benefitbL carried by anycorrectly spelledletter
divided by the expected timeTL required to spell it:

U =
bL

TL
. (9)

We could simply setbL = 1 to assign a unitary benefit of any
letter, or we can measure it in terms of information conveyed
by that letter. Assuming equal probability among letters, the
conveyed information isbL = log2(N − 1) bits. While we
disregard the fact that in reality different letters appearwith
different frequencies, the equal-probability assumptioncan be
useful to directly compare (9) with the ITR of (2).

To computeTL, we first definec as the duration of a single
trial (i.e., the time needed to spell a letter either correctly or
wrongly). For each trial we have two possible cases:

1) The P300 speller selects the correct letter. This happens
with some probabilityp, and TL is the duration of a
single trial.

2) The P300 speller selects the wrong letter. This happens
with probability (1 − p), andTL is longer because one
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Figure 3. Comparison between utility and theoretical bit rate for a P300
speller with 36 choices.

has to add both the time needed for typing a backspace
and that to respell the letter.

Globally, theexpected timebecomes

TL = p c + (1 − p)(c + TB + T
(1)
L ) =

c + (1 − p)(TB + T
(1)
L ) , (10)

where TB is the expected cost of a backspace, andT
(1)
L is

the expected cost of respelling the letter correctly after the
backspace. Similarly, the time for typing a backspace is given
by:

TB = p c + (1 − p)(c + T
(1)
B + T

(2)
B ) , (11)

i.e., when a backspace is “misspelled”, two more backspaces
are needed. Under the assumptions A1 and A2 we obviously
have T

(1)
L = TL. In addition, TB = T

(1)
B = T

(2)
B , and by

subtracting (10) and (11) we also getTB = TL.
Equation (10) can now be written in an iterative formulation

TL = c + 2(1 − p)TL = c + 2(1 − p)(c + 2(1 − p)TL)

= c + 2(1 − p)c + 4(1 − p)2TL = . . .

= c + 2(1 − p)c + 4(1 − p)2c + 8(1 − p)3c + . . .

= c

∞
∑

i=0

(2 − 2p)i; (12)

this series converges to

TL =
c

2p − 1
(13)

if 2p − 1 > 0, i.e., p > 0.5. Conversely, whenp ≤ 0.5 the
series does not converge, and the expected time to correctly
spell a letter goes to infinite.

PuttingbL = log2(N − 1) and (13) into (9) we finally get

U =
bL

TL
=

(2p − 1) log2(N − 1)

c
. (14)

As we decided to measure the benefits in terms of bits of
information, the above expression has the same units of the
ITR, and therefore a direct comparison is possible.

C. Comparison with ITR

Fig. 3 comparesUtility and ITR, and shows how different
they can be. The reason is that (2) measures thecapacity of
a channel, i.e., the maximum performance obtainable by a
noisy channel, while (14) measures the expected performance
of the same channel when information is conveyed in a specific
way; in our case, the way we are using the P300 speller. As
expected, the latter curve lies always below the theoretical
limit, and it is equal to zero when the accuracy is too low. For
high accuracy values, the two curves almost coincide, although
there is a small gap due to the presence of abackspacesymbol,
which is obviously never used if no error is committed.

The bit-rate curves in Fig. 3 are consistent with the plots
in [16, Chapter 3], where a somewhat similar approach to
measuring a BCI performance is developed. The graph shows
regions where the channel cannot be used with the described
P300 speller (whenp ≤ 0.5 in our case) and also areas
where the speed of the speller is very far from the theoretical
limit. The reported comparison should also warn us against
applying (2) blindly, because it may provide unrealistic scores.

A simple numerical example may help to stress the differ-
ence between ITR andUtility . Let’s suppose that in the P300
speller letters are selected at a rate of about 4 per minute and
suppose that a user can achieve an accuracy ofp = 45%,
which is low, but still far better than random-level accuracy
(p = 2.7% with N = 36). By substituting these values in (1),
we getB = 1.36 bits. The information transfer rate for this
user would be4B = 5.4 bits/min; this is not very fast, but, the
ITR metric predicts that communication is possible. However,
the above computation does not consider the way the speller
works. If we include this ingredient in the recipe, we may
easily observe that every displayed letter is more likely to
be wrong than correct. Thus, when the user tries to correct an
error by selecting backspace, another (wrong) letter is selected
more likely than not and the expected time to spell a letter
correctly goes to infinite! The interface cannot be used as it
is and, on average, the transfer rate is exactly 0 bits/min as
predicted by ourUtility metric.

V. UTILITY IN A P300 SPELLER WITH ERROR

CORRECTION

In this section we will show how Utility can be used to
measure the improvement of the performance gained when
an automatic error-correction system (ECS) is added to the
P300 speller. We may assume that the ECS is based on the
detection of error potentials [17], [18] after the presentation
of a feedback, but the derived results are general and valid for
any automatic correction system (e.g., T9-like systems) with
known performances. In the case of an ECS based on error
potentials, the TR recognizes both P300 and error potentials
(in different time periods), while the CI handles the responses
to errors.

A. The P300 Speller with an Error-Correction System

This modified speller basically works as described in the
previous section: It selects a letter by means of P300 detection
and displays it on the screen; if the automatic ECS detects an
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error, the latest letter is automatically canceled, while if no
error is detected, the letter is kept. The user can then decide if
the letter is correct or not, and in the latter case (when the ECS
has taken the wrong decision) he has to select the backspace
symbol to remove the wrong letter.

B. Utility Computation

The Utility of a speller has been already defined by (9); in
the new system, we have to compute the expected time per
letterTL in terms of the performance of both the P300 detector
and the ECS. While the former can be expressed by the single
parameterp, which defines the goodness of the classification,
we characterize the latter by two parameters: 1. the recall for
errors (rE), and 2. the recall for correct trials (rC). We assume
that rE and rC are constant and do not depend on the actual
letter.

For each trial, we have to deal with four possible cases now:

1) The P300 speller selects the correct letter, and the ECS
correctly recognizes it. This happens with probability
p1 = p · rC.

2) The P300 speller selects a wrong letter, and the ECS
does not recognize the error. This happens with proba-
bility p2 = (1−p) · (1− rE), and the user has to “spell”
a backspace and then the letter again.

3) The P300 speller selects the correct letter, and the ECS
wrongly detects an error. This happens with probability
p3 = p · (1 − rC), and the user has to respell the letter
(which has been canceled by the ECS).

4) The P300 speller selects a wrong letter, and the ECS
recognizes the error. This happens with probabilityp4 =
(1 − p) · rE, and the user has to respell the letter; the
wrong letter is canceled by the system.

By following a procedure similar to the one in IV-B, we
can derive1

TL =
c

p rC + (1 − p) rE + p − 1
. (15)

The Utility is obtained by substitutingTL in (9):

U =
bL

TL
=

log2(N − 1) (p rC + (1 − p) rE + p − 1)

c
. (16)

In analogy with (13), this formula can be obtained as the
limit of a series. This limit exists only if the denominator
in (15) is positive, i.e., when

p rC > (1 − p) (1 − rE) , (17)

Fig. 4(a) shows the boundaries defined by (17) for different
values ofp; the inequality is satisfied for the points lying above
the lines, and only in these cases the time for spelling a letter
is finite (i.e., the P300 speller can be useful). It can be noticed
that the constraint becomes tighter asp diminishes, with recall
of errors becoming more and more important.

The left and right sides of (17) are the probabilitiesp1 and
p2 (defined above), respectively; in other words, the speller can
be used as long as the number of correct selections surpasses
the number of wrong letters. The number of letter canceled

1A complete derivation can be found in [19].

by the error detection system affects the speed of the speller,
but it does not affect the fact that the right letter is, sooner or
later, spelled.

C. Utility with and without Error Correction

The really interesting question, though, is: when does error
detection give any improvement to the P300 speller? The
answer can be found by comparing (13) and (15). A first
observation is that, as expected, (13) is a particular case of
(15) with rC = 1 andrE = 0, i.e., no error is ever corrected.

For p ≤ 0.5, (13) has no sense, but, as shown in Fig. 4(a),
it is possible to operate a P300 speller even with such a high
error rate as long as the error detection is sufficiently accurate.
Actually, it could be argued that this is an unlikely scenario,
where incorrect P300 detection is done after many repetitions,
while the ECS perfectly works in a single trial; yet, this is a
piece of the whole picture.

It is more interesting to investigate the situations in which
p > 0.5, when (13) and (15) can be compared directly. In
order to have an improvement, the expected time,TL, should
be lower when error correction is used; thus

p rC + (1 − p) rE + p − 1 > 2p − 1 , (18)

i.e.,
p rC + (1 − p) rE > p . (19)

Fig. 4(b) shows the boundaries defined by (19) for different
values ofp (for p < 0.5 the comparison has no sense); points
above the lines represent values ofrC and rE for which the
presence of the ECS is advantageous. In this case, asp grows
the area defined by (19) shrinks; this happens, because asp
grows the performance of the P300 speller gets better and
better, and it becomes harder and harder for the ECS to make
any difference. The left side of (19) is equal top1 + p4

(previously defined); this means that an ECS is advantageous
when the overall accuracy of the P300 and the ECS is better
than the accuracy of the P300 system alone.

We are now able to compute the gain,g, of introducing an
ECS in a P300 speller. This can be obtained as the ratio of
the time lengths given by (13) and (15):

g =
p rC + (1 − p) rE + p − 1

(2p − 1)
. (20)

A value of g > 1 means that the introduction of ECS
is advantageous (the value ofTL is reduced, and Utility
increased), while introducing the ECS is counter-productive
when g < 1. Equation (20) is subject to the constraints that
both the numerator and the denominator are positive, i.e., (17)
andp > 0.5. If only the denominator is negative, it means that
the P300 speller cannot work without the ECS, and henceg
should be considered infinite. If both the numerator and the
denominator are negative, it means that the P300 speller cannot
work, with or without ECS, and henceg is indefinite. If only
the numerator is negative, it means that introducing the ECS
renders the speller unusable, and henceg = 0.

Fig. 4(c) summarizes the first two graphs in Fig. 4, and
shows the values ofrC and rE for which the ECS is advan-
tageous for the whole range ofp. As before, the part of the
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Figure 4. (a) Condition for the usability of a P300 speller with an ECS. (b) Comparison between two P300 spellers, with and without an ECS. (c) When
an ECS improves the performance of a P300 speller.

plane above the lines is the useful part; values below the lines
are either of no interest or counterproductive. Fig. 4(c) can be
used as a guide to decide to bias the ECS either toward correct
or erroneous epochs, depending on the value ofp.

Some practical examples may help to better understand the
above ideas. Let say that for a particular user the P300 speller
reaches 90% accuracy without error correction, and the error
detection reachesrC = rE = 83%. This situation corresponds
to the cross in Fig. 4(c). As the cross lies below the line
p = 90%, for this particular user the automatic error correction
system is counterproductive. Another user’s performance may
be expressed byp = 70%, rE = 65%, rC = 75% (the asterisk
in Fig. 4(c)); the asterisk lies above the linep = 70%, and
therefore the automatic error correction system should help
this user.

D. Comparison with Modified ITR

It is interesting to compare the gain in adding an ECS
computed with the approach based on utility and the gain
computed with an approach based on the theoretical bit rate
in (3). Fig. 5 shows the performance gain factor obtained by
applying the channel-capacity approach (darker surface) and
our utility-based approach (lighter surface). The two surfaces
show the gain obtained by introducing an ECS in a P300
speller (p = .8 and N = 36 symbols) as a function of
the recallsrC and rE. The graph shows the regions in the
rC,rE plane corresponding to points for which an ECS is
advantageous (areas whereg > 1). Both the regions and the
gains obtained by the two metrics are different. For other
values ofp the graphs are qualitatively the same, but while the
difference between the two approach is small for high values
of p, it grows as the value ofp gets smaller. The approach
based on the information theoretical channel capacity seems
to underestimate the contribution of ErrPs; this is due to its
tendency to underestimate the cost of errors, as already shown
in Fig. 3.

VI. SIMULATIONS AND EVALUATIONS

In order to validate our proposed metric, we have run a
number of simulations mimicking the use of the P300 speller,
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Figure 5. Comparison of performance improvement in a P3 speller (N=36
symbols, p=80%) obtained according to different formulas

with and without an ECS, and with different values for the
accuracies of the component of the BCI.

A random string made of 1000 letters (symbols) and spaces
is chosen in every simulation; all the symbols are used with
equal probability, in order to be consistent with the assump-
tions of the ITR metric. A combination of the parametersp,
rE, and rC is chosen, and the interaction of the interface is
simulated, taking into account errors, wrong decisions, and
backspaces; the simulation ends when the whole string is
correctly spelled. A mean bit rate is computed by dividing
the information contained in the string (1000 bL) by the time
(in trials, i.e., selections) taken to spell the string. This value
is compared with the predictions by theUtility (Equation (16))
and by the theoretical bit rate (Equation (3)).

Fig. 6 shows the results obtained in 100 000 simulations.
The difference between the mean bit rate computed according
to the formulas and the one obtained by the simulations is
shown versus the three parameters that characterize the speller;
since the three parameters plus the bit rate fill a 4-D space,
three 2-D projections are shown. A point is plotted for every
simulation, and darker regions have a higher point density;
also, a line representing the average error is plotted. The ranges
for the parameters have been chosen so as to be realistic
(e.g., p is roughly in the same range as in [20], [21]). The
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Figure 6. Difference of predicted and observed bit rates in simulations of a
P300 speller with automatic error correction. Upper row:Utility ; lower row:
theoretical bit rate.

upper row contains the results for theUtility metric, while
the lower row those for the theoretical bit rate. It is easy to
observe that the error made by theUtility is always around
zero (with fluctuations due to the intrinsic randomness of the
simulations), while the error made by the theoretical bit rate
is biased for a wide range of parameter values.

VII. A P OSSIBLEGENERALIZATION

It is worth noting that we have derived the closed formulas
for Utility under some simplifying assumptions. In fact, we
have hypothesized equal probability of letter occurrence and
equal accuracy for each selection; thus, no confusion matrix
is taken into account in this paper. These assumptions have
helped us to keep the formulas simpler and the exposition
easier to follow, but they are not a limiting factor for our
results. It is possible to derive a formula forUtility in a more
general case, as it has already done for the ITR formula (1) [22,
Appendix B]. For the P300 speller, this requires the compu-
tation of the expected timeTL needed to spell a letter when
different letters have different frequenciesfi (i = 1 . . . N ),
and the confusion matrix (i.e., the probabilitypji of spelling
letter j when aiming at letteri) is arbitrary:

TL =
c + TDel PX|L

PL|L − PBs|L
. (21)

In (21) TDel is the expected time required to recover from
a misspelled letter,PX|L is the probability of spelling a
letter different from the one the user is interested in,PL|L

is the probability of spelling the correct letter, andPBs|L the
probability of spelling the backspace instead of the letterthe
user would like to spell. The above terms can be derived
with techniques applied in Section IV and they result to be:
TDel = c

2pn n−1 (where n is the index of the backspace
command),PL|L =

∑

i6=n fipii, PX|L =
∑

i6=n fi

∑

j 6=n,i pji,
andPBs|L =

∑

i6=n fipni. Although the derivation and analysis
of this Utility formulation based on a full confusion matrix is
out of the scope of this paper, it is worth noting that this result
requirespn n > 0.5 and PL|L > PBs|L for all letters, i.e.,
pii > pni where i 6= n. Since the generalized ITR formula
from [22] has the same shortcoming of (1) (i.e., it treats the

BCI as a communication channel with no reference to the way
the channel is actually used), we expect that a comparison of
Utility and ITR based on the full confusion matrix would lead
to the same result we have claimed in this paper, and some
very preliminary work confirmed already our expectation.

VIII. C ONCLUSIONS

In this paper we have introduced a general metric for
the evaluation of the overall performance of a BCI system
based on the computation of BCIUtility . The new metric
has been also derived in closed form for two discrete-BCI
systems: a P300-speller with and without ECS. Though we
have discussed in details only BCIs based on P300, there is
nothing in our approach that prevents the application to BCIs
based on other potentials or protocols, as long as they are
discrete. For example, it should be possible to apply it to self-
paced protocols by using a statistical model that captures the
timing produced by the particular TR employed.

Utility is a generalization of the efficiency proposed in [3];
it takes into account the time needed to produce an output
in a BCI, as in the efficiency, but also the different benefits
that different outputs may have and the cost connected to
issuing commands whose effects cannot be undone. We also
tried to maintain a simple notation, where the contributionof
the different parameters of the system on the performance is
clear, and thus it can help with tuning and design choices. For
example, the predicted performance of two different classifiers
can be compared to select the best one; or, if a binary BCI is
used to select commands through a binary selection process,
the utility of different dispositions of the choices can be
computed without time-consuming experiments.

Using simulations of the above mentioned spellers, we
have compared the performance of our metric against ITR
in predicting the overall behavior of a BCI, and we have
demonstrated a superior performance of ourUtility metric. We
have also shown that ITR, intended as the channel capacity of
the BCI classifier, can provide unreliable results if employed to
evaluate (and predict) the behavior of the whole BCI system.

This result is not completely surprising. In fact, ITR is
basically a theoretical measure which does not take into
account how the system works in practice. It is focused on the
evaluation of the TR and its classification strategy, but it does
not consider how this classification is further processed bythe
system. Conversely,Utility is a task-oriented metric which can
take into account all the components of a BCI device as well
as how the user interacts with the system. The possibility to
factor both the TR and the CI characteristics intoUtility is
useful for design purposes, where there is the need to choose
among different classifiers, different correction strategies, and
different CIs in order to select the optimal combination.

Our simulations have shown that the use of a task-oriented
metric allows realistic observations about the usefulnessof an
ECS and to identify optimal parameters and operating settings.
It is important to notice that although we have computed the
joint performance of the TR and the CI, we have modeled the
two subsystems separately. This separation permits to study
many combinations of TRs and CIs efficiently. For example,
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one experimental session with a subject can be analyzed
offline to evaluate the accuracy of some classifiers, and the
performance of alternative CIs can be modeled in terms of the
accuracy of such classifiers. Exploring the use of a new TR
or a new CI requires only one time-consuming step, i.e., the
modeling of the single new component; the combination with
the other components requires only the substitution of some
numerical values in a formula.

While we have applied the proposed approach to two
specific cases, the same approach can be extended to study
other kinds of BCIs as well as the impact of the modification
of other design parameters. We believe that such an approach
should lead to a better comparison between different protocols.
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