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Abstract— A relevant issue in a brain-computer interface
(BCI) is the capability to efficiently convert user intentions into TRANSDUCER
correct actions, and how to properly measure this efficiency. [ Acsﬁgﬁ‘ilonHProcessingHCIassifier}»—ﬁ CONTROL L L, actions
Usually, the evaluation of a BCI system is approached through ’ [Aca INTERFACE
the quantification of the classifier performance, which is often
measured by means of the information transfer rate (ITR).

A shortcoming of this approach is that the control interface = A n

BCI

design is neglected, and hence a poor description of the overall L

performance is obtained for real systems. To overcome this  ---------- * Intention Intended
limitation, we propose a novel metric based on the computation Ideal/Expected

of BCI Utility. The new metric can accurately predict the overall

performance of a BCI system, as it takes into account both the Figure 1. BCI architecture and performance measurement.rBiffenetrics
classifier and the control interface characteristics. It is therebre  measure performance at different points.

suitable for design purposes, where we have to select the best

options among different components and different parameters

setup. In the paper, we computeUtility in two scenarios, a P300 . ; .
speller and a P300 speller with an Error Correction System Two functional blocks can be recognized (see also [2], [8):

(ECS), for different values of accuracy of the classifier and reda Transducer (TR) and the control interface (C|)- Their otgpu
of the ECS. Montecarlo simulations confirm that Utility predicts ~ are evidenced by blocks ‘A" and ‘B’, respectively. Both thR T

the performance of a BCI better than ITR. and CI blocks contribute to the overall system performance.
Index Terms—brain-computer interface (BCI), BCI perfor- The kind of recorded signal, the way it is processed, the
mance, P300 speller, error potential type of classifier and the CI strategy are only a few examples

of the variety of design options in the implementation of a
BCI system. Evaluation criteria are therefore needed tecsel

I. INTRODUCTION . . . . .
i . . . among available options and to identify the best design.
A Brain-Computer Interface (BCI) is a direct communica- Usually, the evaluation of a BCI system is approached

tion pathway between the brain and an external device ., ,gh the quantification of the classifier performance. i.
bypasses any muscle or nerve mediation and interprets hurjal .omparison among systems is performed at level of block
commands by picking up (and analyzing) signals generated Ryin rig 1. A series of evaluation criteria has been prepd
the brain activity [1]. A relevant issue for this kind of intace including the classification accuracy (or, equivalentlge t

?s related to the' capability to convert efficiently userhttgns error rate), Cohen's Kappa coefficient [4], and indexes tase
into correct actions, and how best to assess such efficiency, tal information, such as the widely-used information
_The schematic architecture of a BCI system is depicted iy nsfer rate (ITR) [5]. A detailed overview of these megric
Fig. 1: the acquired signal (typically the EEG for non-invas . e found in [6]. Unfortunately, these metrics do not take
BCI) is processed, and its relevant features extracteds&hg intg account and therefore they are poorly descriptive of

features are then used to feed a classifier with the aim @t o erall BCI performances. In addition, they are of ledit

discriminating among a discrete set of options. The sedectgqq for design purposes, as they do not provide any clue to

option is then interpreted and the desired action generatggd,q¢ among different Cls, among different error corcecti
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the amount of (quantifiable) benefits obtained by the usenwh€his formula is derived from Shannon’s theory [10], and it
a given BCI system is used. As the new metric depends mepresents a measure of theutual informationbetween the
both the TR performances and the CI strategy, it is a gooder’s choice and the BCI selection, under the assumptions
candidate to predict the overall BCI performance and toguithat all choices convey the same amount of information, (i.e.
the developer in the overall system optimization. they are chosen by the user with equal probability), thé

This paper is organized as follows: Section Il briefly rezallthe same for all the possible choices, and that all the wrong
the most common metrics employed for the evaluation of BChoices have equal probability. In other words, a BCI system
performance, while in Section Ill the concept bfility is is seen as a noisy channel, in which noise is added every time
introduced for a discrete-BCl system. In the next two sestio the system selects the wrong option.
Utility is used to evaluate the overall performance of a P300-According to Shannon’s noisy channel coding theorem [10],
based speller with and without an error correction systeri:is possible to achieve an arbitrarily small error proliabi
We show that the new metrics can predict when (and at what a communication on a noisy channel as long as the
extent) an error-correction system improves the system petformation transfer rate does not go beyond a certain limit
formance. In Section VI we report the results of Monte-Carl®he maximum achievable transfer rate with no errors is the
simulations, and we evidence the potentiality/advantadse mutual information, and this seems to justify the use of raltu
new metric compared to the ITR. Finally, some discussion airformation in (1). The only problem is that Shannon proved
conclusions are reported in Sections VIl and VIl respatyiv his famous theorem by transferring information embedded in
ever increasing blocks of bits, and in telecomunicatioryver
complex error correction schemes have been devised in order
to get near Shannon’s limit. For a BCI, where a human subject

A set of metrics has been proposed in the literature &s at one end of the noisy channel, it is not possible to
asses the performance of a BCI system. Among them W@ anything complex, and the estimate given by the mutual
recall the classification accuracy, Cohen’s Kappa stefiiie information can be very far from what can be achieved in
information transfer rate, and the more recent eﬁ:iCiency. practice_ In other words, (1) is a theoretical figure' which

Classification accuracyi.e., the fraction of examples cor-may be unrealistic for measuring (or predicting) thesal
rectly classified, is the simplest performance measure irsetherformance of practical BCI systems.
the BCI literature. Sometimes, the error rate is used idstea A further problem with (1) is that it does not take into
but it is equivalent to accuracy, as the error rate is thetiiec account how the BCI is implemented and, in particular, how
of examples wrongly classified. They are both easy to compyfg output of the TR is interpreted by the CI. Even in an anal-
and to understand, but they present many shortcomings. They Jike [11], where different metrics are compared thioug
do not make any distinction between different kinds of esyorsimylated experiments, or like [12], where the performanice
while different kinds of errors have different impact (9ost 5 BC| is analyzed as a parameter varies, the Cl is not modeled.
general. Moreover, classes that appear less frequentljyein fhere are alternative designs in which the CI can be buitt, bu
data are weighted less in the accuracy computation, and & does not help in selecting the best combination of TR and
is likely to lead to biased classifiers and biased evaluation cj (as also underlined in [3]).

The Cohen's Kappa coefficierjd] is a way to express the A modified version of the above relation was derived in [13]
agreement between two classifications. This measure @kes {yhen an error correction system (ECS) based on the detection

account the different frequencies for classes and also hgyWgrror Potentials (ErrP) is added to the BCI system. The
errors are distributed among classes, although its mee’mingesumng formula is

not so explicit as accuracy.
Information transfer ratgITR — sometimes simply called 1—9p
bit rate) is a performance measure widely used in the litera> — Pt <1°g2N +p'logy p’ + (1 —p') log, N 1) . 3)
ture [5], [8]. It has many advantages: It does not depend on
any particular protocol, it takes into account both the nambwherep, = p-rc+(1—p) (1—rg) andp’ = p-rg/py, and where
of choices and time, it is strongly theoretically groundadg 7 is the recall for errors (the fraction of times that an actual
it could be applied also to continuous ranges of choices [9Error is recognized by the error classifier) ardis the recall
A theoretical formula from information theory was derivedor correct trials (the fraction of times that a correctlyeled
in [5] to compute the (mean) number of bits transferred pétter is recognized by the error classifier). In other words
trial in a BCI: they derive the new accuragy for the system after discarding
1—p outcomes rejected by the ErrP detection, and use it in (&); th
B =1logy N +plogsp+ (1 — p)logy ——, (1) factor p, takes into account the fact that discarded outcomes
N -1 . . . S
do not contribute to the information transfer. Equation i€3)
where IV is the number of possible choices per trial, and subject to the same limitations of (1), though.
is the accuracy of the BCI. When (1) is divided by the trial Al the above criticisms to the ITR have been addressed
duration,c, the mean number of bits transferred per time unig [3], where also a realistic metric measuring the efficienc

II. MEASURING BCI| PERFORMANCE

i.e., the Information Transfer Rate (ITR), is obtained: of a BCl is proposed. Such efficiency represents the invefrse o
B the expected time to issue a meaningful command through the
ITR=— (2) BclI, but it does not contemplate the possibility that diffetr
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b b b, This can be used in (6) to eliminate the limit and obtain a
T1 : b formulation of Utility valid for a discrete-BCIl system:
k-1 K
I } Bl ] _ Bl

U=E = . 8

e Enie ©
1 ’ “ klw ‘ t This formulation can be easily read as the ratio between the
b average benefit (among all the possible discrete choiceak) an

the average time needed to get it. Therefaidity will be
Figure 2. The benefit function for a discrete BCI system. Thection is  higher for the BCI system that makes it possible to reach the

a series of delta functions, because a benefit is availaijevdren a certain desired target (maximum benefit) in the shortest interval of
selection is made. time

commands may have different benefits (or costs, if they danno IV. UTILITY INA P300 $ELLER
be undone). In this section we derive an explicit formula bftility for
a P300 speller [15]. As our metric is dependent on the CI

M. UTILITY strategy, we have to define how the interface works.

We approach 'the quantlflcathn of a BCI system perfo'r&. The P300-Speller design
mance from a different perspective, more user-centered, an
we introduce the concept aftility. If a BCI is supposed to ~ We design the interface in a very simple and natural way:
serve the user as a tool, the user should get some kindAéfevery trial the BCI selects a letter and displays it on the
benefit when the BCI works correctly. We can formalize thigcreen. If the letter is correct, the user moves on to the next

concept by definingtility as the expected average benefit (foetter, otherwise he/she has to “hit” the backspace symbol
the user) over time: to cancel the misspelled letter. Globally, the speller has

" possible selectionsV — 1 letters plus the backspace symbol.
fo b(t)dt] The following general assumptions are also considered:
T

Al. the accuracy of the system is constant over the trials,

] . ) ) - thus no time-dependency is included in the model;
whereb(t) is a benefit functionwhich assumes positive (0r a2 the system has no memory, i.e., each trial is not influ-
negative) values depending on whether the choice at time enced by the result of the previous one.

conforms to (or contradicts) the user intention.
Let us consider the case of a discrete BClI, i.e., a BCI syst

U=E]| lim

T—o0

; (4)

Moreover, we make use of the same assumptions underlying
rB All these assumptions are not required for the general

V\Tos::e OuttEUtb'S d?:?ed :_)nly a‘h (tj)|s<(:jr_ete t;me w;s;cjar;_ts. 5 t ormulation of Utility ; they just make the following derivation
situation, the benefit function will be discrete, and defioaty simpler and let us concentrate on the main issues.

in the time-instantt;, when an output is generated. In fact,
a quantifiable benefit can be defined only when an output is

selected (e.g., a letter printed by the speller, or a tagatired B. Utility computation

on the screen). The situation is described in Fig. 2, and inBy using (8), theUtility for a P300 speller is obtained as

mathematical terms we may write the average benefit, carried by anycorrectly spelledetter
K divided by the expected timéy, required to spell it:
b(t) =) bid(t — i), ®) b
U=_—+. 9)
k=1 11,

where K is the number of outputs in the intervgd,T]. We could simply seb;, = 1 to assign a unitary benefit of any
Substitugi{ng Equation (5) into Equation (4) and observimatt letter, or we can measure it in terms of information conveyed
T = >, Aty, where At = t, —t,—; for £ > 1, and by that letter. Assuming equal probability among letteh® t

Aty = t1, we may write conveyed information idy, = loga(IN — 1) bits. While we

- disregard the fact that in reality different letters appedth

U—E| lim > Jo bro(t — tk)dt] different frequencies, the equal-probability assumptian be
I et T useful to directly compare (9) with the ITR of (2).

To computelr,, we first definec as the duration of a single
g) trial (i.e., the time needed to spell a letter either cotyeot
wrongly). For each trial we have two possible cases:

1) The P300 speller selects the correct letter. This happens
with some probabilityp, and 73, is the duration of a

K
b
lim M

=E
K—oo 2521 Aty

For a stochastic variable. generated by an ergodic pro-
cess [14], the following relation holds:

single trial.
. Zszl o 2) The P300 speller selects the wrong letter. This happens
Khinoo K =E[n]. ) with probability (1 — p), andTy, is longer because one
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—Utilty bit rate C. Comparison with ITR

H— TR bit rate Fig. 3 comparedJtility and ITR, and shows how different
they can be. The reason is that (2) measuresc#pacity of
a channel i.e., the maximum performance obtainable by a
noisy channel, while (14) measures the expected perforenanc
of the same channel when information is conveyed in a specific
way; in our case, the way we are using the P300 speller. As
expected, the latter curve lies always below the theoiletica
: ‘ ‘ ‘ ‘ ‘ ‘ limit, and it is equal to zero when the accuracy is too low. For
0 01 02 03 04 05 06 07 08 09 1 high accuracy values, the two curves almost coincide, agho
Accuracy there is a small gap due to the presence lohekspacesymbol,
Figure 3. Comparison between utility and theoretical bierfitr a P300 which IS_ObVIOUSIy nev_er U.Sed if no error_ IS Commltted‘
speller with 36 choices. The bit-rate curves in Fig. 3 are consistent with the plots
in [16, Chapter 3], where a somewhat similar approach to
measuring a BCI performance is developed. The graph shows
has to add both the time needed for typing a backspa@&gions where the channel cannot be used with the described
and that to respell the letter. P300 speller (wherp < 0.5 in our case) and also areas
where the speed of the speller is very far from the theoretica
limit. The reported comparison should also warn us against
1 applying (2) blindly, because it may provide unrealistiorss.
To=pct(1-p)c+Tp+T} ") = A simple numerical example may help to stress the differ-
c+ (1 —p)(Ts + TL(l)), (10) ence between ITR andtility. Let's suppose that in the P300
speller letters are selected at a rate of about 4 per minate an

where T} is the expected cost of a backspace, 4i# is Suppose that a user can achieve an accuracy ef 45%,
the expected cost of respelling the letter correctly after tWhich is low, but still far better than random-level accyrac

backspace. Similarly, the time for typing a backspace ismiv (P = 2.7% with N = 36). By substituting these values in (1),
by: we getB = 1.36 bits. The information transfer rate for this

(1) 2) user would belB = 5.4 bits/min; this is not very fast, but, the
Ty =pet+ (1 =p)lct+ Ty +T57), A1) TR metric predicts that communication is possible. Howgeve

. e Y the above computation does not consider the way the speller
i.e., when a backspace is “misspelled”, two more backspagl(?

. ! Srks. If we include this ingredient in the recipe, we may
are nee(:lo!ed. Under the ggsumptlons '?11) and '?22) we ObV'Ouﬁé(sily observe that every displayed letter is more likely to
have T}’ = Ti. In addition,7g = Ty’ = 13, and by

) be wrong than correct. Thus, when the user tries to correct an
subtracting (10) and (11) we also gt = Ti.. error by selecting backspace, another (wrong) letter ectedi
Equation (10) can now be written in an iterative formulatiop,qre likely than not and the expected time to spell a letter
correctly goes to infinite! The interface cannot be used as it
T, =c+2(1-p)TL =c+2(1 —p)(c+2(1 —p)T1) is and, on average, the transfer rate is exactly 0bits/min as
=c+2(1—p)e+4(1 —p)*Ty = ... predicted by outUtility metric.

=c+2(1—p)e+4(1—p)c+8(1—p)c+...

Bit rate
o P N W A 0O o

Globally, theexpected timéecomes

- V. UTILITY INA P300 $ELLER WITH ERROR
=N 2-2) (12) CORRECTION
i=0 In this section we will show how Utility can be used to
measure the improvement of the performance gained when
an automatic error-correction system (ECS) is added to the
¢ P300 speller. We may assume that the ECS is based on the
= 2 — 1 13) detection of error potentials [17], [18] after the presénta
of a feedback, but the derived results are general and \alid f
if 2p—1 >0, i.e.,, p > 0.5. Conversely, wherp < 0.5 the any automatic correction system (e.g., T9-like systemsh wi
series does not converge, and the expected time to corregiywn performances. In the case of an ECS based on error
spell a letter goes to infinite. potentials, the TR recognizes both P300 and error potsntial
Putting by, = log2(N — 1) and (13) into (9) we finally get (in different time periods), while the Cl handles the resgm
to errors.

this series converges to

T3,

TL C

A. The P300 Speller with an Error-Correction System

As we decided to measure the benefits in terms of bits of This modified speller basically works as described in the
information, the above expression has the same units of fhrevious section: It selects a letter by means of P300 detect
ITR, and therefore a direct comparison is possible. and displays it on the screen; if the automatic ECS detects an

Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.o

Authorized licensed use limited to: Politecnico di Milano. Downloaded on October 18, 2009 at 11:59 from |IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

error, the latest letter is automatically canceled, whilea by the error detection system affects the speed of the spelle
error is detected, the letter is kept. The user can then détcidbut it does not affect the fact that the right letter is, soare
the letter is correct or not, and in the latter case (when B8 E later, spelled.

has taken the wrong decision) he has to select the backspace

symbol to remove the wrong letter. C. Utility with and without Error Correction
N . The really interesting question, though, is: when doesrerro
B. Utility Computation detection give any improvement to the P300 speller? The

The Utility of a speller has been already defined by (9); ianswer can be found by comparing (13) and (15). A first
the new system, we have to compute the expected time péservation is that, as expected, (13) is a particular chse o
letter 71, in terms of the performance of both the P300 detectt5) with rc = 1 andrg = 0, i.e., no error is ever corrected.
and the ECS. While the former can be expressed by the singld-or p < 0.5, (13) has no sense, but, as shown in Fig. 4(a),
parametep, which defines the goodness of the classificatioit,is possible to operate a P300 speller even with such a high
we characterize the latter by two parameters: 1. the regall £rror rate as long as the error detection is sufficiently esteu
errors ¢g), and 2. the recall for correct trials{). We assume Actually, it could be argued that this is an unlikely sceoari
that g andr¢ are constant and do not depend on the actuahere incorrect P300 detection is done after many repesitio
letter. while the ECS perfectly works in a single trial; yet, this is a

For each trial, we have to deal with four possible cases nopiece of the whole picture.

1) The P300 speller selects the correct letter, and the ECSt iS more interesting to investigate the situations in \hic
correctly recognizes it. This happens with probability > 0-5, when (13) and (15) can be compared directly. In
pL=p-TC. order to have an improvement, the expected titig, should

2) The P300 speller selects a wrong letter, and the E&§ lower when error correction is used; thus
does not recognize the error. This happens with proba-

rc+(1—-p)rge+p—-—1>2p—-1, 18
bility p» = (1—p)-(1—7g), and the user has to “spell” pret(1=p)re+p P (18)
a backspace and then the letter again. e,
3) The P300 speller selects the correct letter, and the ECS prc+(1—p)rg >p. (19)

wrongly detects an error. This happens with probability

ps = p- (1 rc), and the user has to respell the Iette\gaFlg' 4(b) shows the boundaries defined by (19) for different

I fp (f 5 th i h ; POi
(which has been canceled by the ECS). ues ofp (for p < 0.5 the comparison has no sense); points

ove the lines represent valuesref and rg for which the
4) The P300 speller selects a wrong letter, and the E(gg P rof ‘e

: th This h ith orobabil esence of the ECS is advantageous. In this cage gasws
recognizes the error. This happens with probabylify= the area defined by (19) shrinks; this happens, becauge as

(1 _p)I.tZE, and the Iusaeg h?hs o rt?[spell the letter; thSrows the performance of the P300 speller gets better and
wrong. etier1s cancele ) y € system. ] better, and it becomes harder and harder for the ECS to make
By following a procedure similar to the one in IV-B, Weany difference. The left side of (19) is equal t9 + pa

can derivé (previously defined); this means that an ECS is advantageous
1 = ¢ _ (15) when the overall accuracy of the P300 and the ECS is better
prc+(1—p)re+p—1 than the accuracy of the P300 system alone.
The Utility is obtained by substitutind}, in (9): We are now able to compute the gain,of introducing an

ECS in a P300 speller. This can be obtained as the ratio of
- % _logx(N—-1)(pre +A=p)re+p—-1) (16) the time lengths given by (13) and (15):
L C

g=Pret(-pre+tp-1

In analogy with (13), this formula can be obtained as the G- 1) (20)
limit of a series. This limit exists only if the denominator #
in (15) is positive, i.e., when A value of ¢ > 1 means that the introduction of ECS
is advantageous (the value @f, is reduced, and Ultility
prc > (1—p)(1—rg), 17) increased), while introducing the ECS is counter-prodecti

Fig. 4(a) shows the boundaries defined by (17) for differeffh®ng < 1. Equation (20) is subject to the constraints that
values ofp; the inequality is satisfied for the points lying abov&®°th the numerator and the denominator are positive, 1&), (
the lines, and only in these cases the time for spelling arlet@"d? > 0.5. If only the denominator is negative, it means that
is finite (i.e., the P300 speller can be useful). It can becedti e P300 speller cannot work without the ECS, and hence
that the constraint becomes tighteradiminishes, with recall should_be considered _|nf|r_1|te. If both the numerator and the
of errors becoming more and more important. denommator are negative, it means thafc the PQOQ spelleotan
The left and right sides of (17) are the probabilitigsand work, with or W.IthOUt EF:S, _and hencggis II:'IdEfInIte.. If only
p» (defined above), respectively; in other words, the spetier cthe numerator is negative, it means that introducing the ECS
be used as long as the number of correct selections surpa&gBgers the speller unusable, and hence 0.

the number of wrong letters. The number of letter canceled™9- 4(C) summarizes the first two graphs in Fig. 4, and
shows the values afc andrg for which the ECS is advan-

LA complete derivation can be found in [19]. tageous for the whole range pf As before, the part of the
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1 p=01 1
p=o0l2 p=0.9
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Figure 4. (a) Condition for the usability of a P300 spellethwén ECS. (b) Comparison between two P300 spellers, with atidbwt an ECS. (c) When
an ECS improves the performance of a P300 speller.

plane above the lines is the useful part; values below tleslin 2 [ Juility
are either of no interest or counterproductive. Fig. 4(c) oa
used as a guide to decide to bias the ECS either toward correct 15
or erroneous epochs, depending on the valug. of

Some practical examples may help to better understand the

above ideas. Let say that for a particular user the P300espell

gain factor
-

reaches 90% accuracy without error correction, and the erro 05 %%%%%’Z””
detection reaches: = ry = 83%. This situation corresponds . 7 4

to the cross in Fig. 4(c). As the cross lies below the line = o

p = 90%, for this particular user the automatic error correction %00z 04 !
system is counterproductive. Another user’s performanag m e e

be expressed by = 70%, rg = 65%, rc = 75% (the asterisk

in Fig. 4(c)); the asterisk lies above the lipe= 70%, and Figure 5. Comparison of performance improvement in a P3 spéileB§
: . i . . _

therefore the automatic error correction system shoulgy h&y™Pols. p=80%) obtained according to different formulas

this user.

D. Comparison with Modified ITR with and without an ECS, and with different values for the

It is interesting to compare the gain in adding an Ec&ccuracies of the component of the BCI.
computed with the approach based on utility and the gainA random string made of 1000 letters (symbols) and spaces
computed with an approach based on the theoretical bit ritechosen in every simulation; all the symbols are used with
in (3). Fig. 5 shows the performance gain factor obtained t§fual probability, in order to be consistent with the assump
applying the channel-capacity approach (darker surfand) &10ns of the ITR metric. A combination of the parametgrs
our utility-based approach (lighter surface). The two ateb "E: andr¢ is chosen, and the interaction of the interface is
show the gain obtained by introducing an ECS in a p3@gimulated, taking into account errors, wrong decisions] an
speller p = .8 and N = 36 symbols) as a function of backspaces; the simulation ends when the whole string is
the recallsrc and rg. The graph shows the regions in th&orrectly spelled. A mean bit rate is computed by dividing
ro,rg plane corresponding to points for which an ECS ifhe information contained in the string0006.) by the time
advantageous (areas wheye> 1). Both the regions and the (in trials, i.e., selections) taken to spell the string. STtalue
gains obtained by the two metrics are different. For oth& compared with the predictions by thkility (Equation (16))
values ofp the graphs are qualitatively the same, but while th@nd by the theoretical bit rate (Equation (3)).
difference between the two approach is small for high valuesFig. 6 shows the results obtained in 100000 simulations.
of p, it grows as the value op gets smaller. The approachThe difference between the mean bit rate computed according
based on the information theoretical channel capacity seei@ the formulas and the one obtained by the simulations is
to underestimate the contribution of ErrPs; this is due $o i8hown versus the three parameters that characterize tierspe
tendency to underestimate the cost of errors, as alreadyrsh@ince the three parameters plus the bit rate fill a 4-D space,
in Fig. 3. three 2-D projections are shown. A point is plotted for every
simulation, and darker regions have a higher point density;
VI. SIMULATIONS AND EVALUATIONS also, a line representing the average error is plotted. Aihgas
In order to validate our proposed metric, we have run far the parameters have been chosen so as to be realistic
number of simulations mimicking the use of the P300 spellde.g., p is roughly in the same range as in [20], [21]). The
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BCI as a communication channel with no reference to the way
the channel is actually used), we expect that a comparison of
Utility and ITR based on the full confusion matrix would lead

, I to the same result we have claimed in this paper, and some
-02 very preliminary work confirmed already our expectation.

VIII. CONCLUSIONS

In this paper we have introduced a general metric for
the evaluation of the overall performance of a BCI system
based on the computation of BQtility. The new metric

o6 07 o8 09 o7 on o8 os o7 om os oss o9 has been also derived in closed form for two discrete-BCl

systems: a P300-speller with and without ECS. Though we
Figure 6. Difference of predicted and observed bit ratesriuations of a have discussed in details only BCls based on P300, there is
P300 speller with automatic error correction. Upper ratility; lower row:  nothing in our approach that prevents the application tosBCI
theoretical bit rate. based on other potentials or protocols, as long as they are
discrete. For example, it should be possible to apply it tb se

upper row contains the results for thdility metric, while paced protocols by using a statistical model that captures t

the lower row those for the theoretical bit rate. It is easy fiming produced by the particular TR employed. _
observe that the error made by thility is always around Utility is a generalization of the efficiency proposed in [3];

zero (with fluctuations due to the intrinsic randomness ef th takes into account the time needed to produce an output

simulations), while the error made by the theoretical bie ra @ B_CI’ as in the efficiency, but also the different benefits
is biased for a wide range of parameter values. that different outputs may have and the cost connected to

issuing commands whose effects cannot be undone. We also
tried to maintain a simple notation, where the contributién
the different parameters of the system on the performance is
It is worth noting that we have derived the closed formuladear, and thus it can help with tuning and design choices. Fo
for Utility under some simplifying assumptions. In fact, wexample, the predicted performance of two different cfessi
have hypothesized equal probability of letter occurrermg acan be compared to select the best one; or, if a binary BCl is
equal accuracy for each selection; thus, no confusion mattised to select commands through a binary selection process,
is taken into account in this paper. These assumptions hake utility of different dispositions of the choices can be
helped us to keep the formulas simpler and the expositiscomputed without time-consuming experiments.
easier to follow, but they are not a limiting factor for our Using simulations of the above mentioned spellers, we
results. It is possible to derive a formula fotility in a more have compared the performance of our metric against ITR
general case, as it has already done for the ITR formula 1) [2n predicting the overall behavior of a BCI, and we have
Appendix B]. For the P300 speller, this requires the compdemonstrated a superior performance of Gtility metric. We
tation of the expected timé;, needed to spell a letter whenhave also shown that ITR, intended as the channel capacity of
different letters have different frequencigs (i = 1...N), the BCI classifier, can provide unreliable results if emplbyo
and the confusion matrix (i.e., the probability; of spelling evaluate (and predict) the behavior of the whole BCI system.
letter j when aiming at lettef) is arbitrary: This result is not completely surprising. In fact, ITR is
¢+ T P basically atheoretical measure which does not take into
Del I'X]|L . . .
=5 P (21) accoun_t how the system v_vorks in _p_racpce. Itis focused_on the
LIL = T Bs|L evaluation of the TR and its classification strategy, bubiési
In (21) Tpe is the expected time required to recover fronmot consider how this classification is further processethby
a misspelled letter,Px;, is the probability of spelling a system. Converselyltility is a task-oriented metric which can
letter different from the one the user is interested iy, take into account all the components of a BCI device as well
is the probability of spelling the correct letter, aftl,;, the as how the user interacts with the system. The possibility to
probability of spelling the backspace instead of the letiter factor both the TR and the CI characteristics itdtlity is
user would like to spell. The above terms can be derivaeful for design purposes, where there is the need to choose
with techniques applied in Section IV and they result to bamong different classifiers, different correction straegand
Tpe = m (where n is the index of the backspacedifferent Cls in order to select the optimal combination.
command),PLi, = 32,4, fibiis PX|L = D220 i 22 jin.i Piis Our simulations have shown that the use of a task-oriented
and Pgy|1, = Z#n fipni. Although the derivation and analysismetric allows realistic observations about the usefuliésmn
of this Utility formulation based on a full confusion matrix iSECS and to identify optimal parameters and operating ggsttin
out of the scope of this paper, it is worth noting that thisiles It is important to notice that although we have computed the
requiresp,, > 0.5 and P, > Pggp, for all letters, i.e., joint performance of the TR and the Cl, we have modeled the
Dpii > pni Wherei # n. Since the generalized ITR formulatwo subsystems separately. This separation permits toy stud
from [22] has the same shortcoming of (1) (i.e., it treats thmany combinations of TRs and Cls efficiently. For example,

VIl. A POSSIBLEGENERALIZATION

L
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one experimental session with a subject can be analyZeg G. Visconti, B. Dal Seno, M. Matteucci, and L. Mainartiutomatic
offline to evaluate the accuracy of some classifiers, and the recognition of error potentials in a P300-based brain-cdempinter-

f f alt tive CI b deled in t fth face,” in Proc. 4th International Brain-Computer Interface Workph®
performance or alternative LIs can be modeled In terms Or tN€  qaining Course  Graz, Austria: Technischen UniveiitGraz, Sep.

accuracy of such classifiers. Exploring the use of a new TR 2008, pp. 238-243.

or a new Cl requires only one time-consuming step, i.e., th] B. Dal Seno, “Toward an integrated P300- and ErrP-babeain-
deli f the single new component: the combination with computer interface,” Ph.D. dissertation, Politecnico diavo, Milan,

modeling o g comp ; mol Italy, 2009.

the other components requires only the substitution of sor2e] E. W. Sellers, D. J. Krusienski, D. J. McFarland, T. M.ughan,

numerical values in a formula. gnd J. R. Wolpaw, “A P300 event-r_elated potentlgl braln-cutap

hil h lied th d h to tw interface (BCI): The effects of matrix size and inter stimuhigrval on

W.'_e we have applie € proposed approac 0 0 performance,Biol. Psychol. vol. 73, no. 3, pp. 242-252, Oct. 2006.

specific cases, the same approach can be extended to sterjyD. J. Krusienski, E. W. Sellers, D. J. McFarland, T. M.ughan, and

other kinds of BCls as well as the impact of the modification ~J: R Wolpaw, *Toward enhanced P300 speller performadcéyeurosci.

. . Methods vol. 167, no. 1, pp. 15-21, Jan. 2008.
of other design parameters. We believe that such an approggh

' - T. Nykopp, “Statistical modelling issues for the adaptbrain interface,”
should lead to a better comparison between different potgoc Master's thesis, Helsinki University of Technology, Depaent of

Electrical and Communications Engineering, 2001.
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