
Introduction to fuzzy sets

Andrea Bonarini

Artificial Intelligence and Robotics Lab
Department of Electronics and Information

Politecnico di Milano

E-mail: bonarini@elet.polimi.it
URL:http://www.dei.polimi.it/people/bonarini



Introduction to Fuzzy Sets  © A. Bonarini (bonarini@elet.polimi.it)  - 2 of 33

A bit of history

• Fuzzy sets have been defined by Lotfi Zadeh in 1965, as a tool to 
model approximate concepts

• In 1972 the first “linguistic” fuzzy controller is implemented

• In the  Eighties boom of fuzzy controllers first in Japan, then USA 
and Europe

• In the Nineties applications in many fields: fuzzy data bases, fuzzy 
decision making, fuzzy clustering, fuzzy learning classifier systems, 
neuro-fuzzy systems… 
Massive diffusion of fuzzy controllers in end-user goods

• Now, fuzzy systems are the kernel of many “intelligent” devices
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Main characteristics

E.g.: control of a power plant. 

We can define what to do in standard 
operating conditions (e.g., steam 
temperature =120°, steam pressure 2 
atm), and when in critical situations 
(e.g., steam temperature= 100°), and 
design a model that smoothly goes from 
one point to the other.

Fuzzy sets: 
precise model in a finite number of points, smooth transition 
(approximation) among them.
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What is a fuzzy set?

A fuzzy set is a set whose membership function may range 
on the interval [0,1].

Crisp sets

Males

Engineers

Adults

Children

Fuzzy sets
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Fuzzy membership functions

A membership function defines a set

Defines the degree of membership of an element to the set 

μ: U [0, 1]

1

0

0,5

35 Age

Young

Old

not very Young
A 35 years old person is:

•Young with membership 0,3

•Old with membership 0,2

•not very Young with membership 0,6
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How to define MFs

1. Select a variable

2. Define the range of the variable

3. Identify labels

4. For each label identify characteristic points

5. Identify function shapes

6. Check
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Let’s try to define some MFs

First of all, the variable…
Range of the variable
Labels
Characteristic points
Function shape

Distance [m]

1

62 4

FarClose Medium

Distance
[0..10]
Close, Medium, Far 
0, max, where MF=1, …
Linear

100



Introduction to Fuzzy Sets  © A. Bonarini (bonarini@elet.polimi.it)  - 8 of 33

MFs and concepts

MFs define fuzzy sets

Labels denote fuzzy sets

Fuzzy sets can be considered as conceptual representations

Symbol grounding: 
reason in terms of concepts and ground them on objective reality

T=100 °C

Hot!
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Some conceptual differences

A fuzzy set with only one 

member with the maximum 

membership

A fuzzy set with a set of 

members with the maximum 

membership

1

a ba- α b -β

1

aa- α a + β
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Some conceptual differences

A fuzzy set with only one 

member

A fuzzy set with all the 

members having the

maximum membership 

1

a

1

a b
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Some variations
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Fuzzy sets on ordinal scales

0 1 2 3 4 5 6

0 - no education
1 - elementary school
2 - high school
3 - two year college
4 - bachelor's degree
5 - masters's degree
6 - doctoral degree

poorly educated
highly educated
very highly educated
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Fuzzy sets and intervals

T

very low low medium high very high

very low low medium high very high

T

μ

Smoother transition
in labeling a value
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Frame of cognition

Fuzzy sets covering the universe of discourse

Each fuzzy set is a granule

very low low medium high very high

T

μ
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Properties of a frame of cognition

Coverage

Each element of the universe of discourse is assigned to at 
least a granule with membership  > 0

Unimodality of fuzzy sets

There is a unique set of values for each granule with 
maximum membership

Fuzzy partition: 

for each value of the universe of discourse the sum of 
membership degrees to the corresponding granules is 1
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Robustness

Let’s consider a punctual error as the sum of the errors in 
interpretation of a point by fuzzy sets due to imprecise 
measurements, noise, …

e (â) = |μ1 (â) - μ1 (a')| + ... + |μn (â) - μn (a')|

and the integral error, as the integral of e(a) over the range of a

ei = ∫
 

e(a) da

It can be demonstrated that the integral error of a fuzzy partition 
is smaller than that of a boolean partition, and that it is minimum 
w.r.t. any other frame of cognition.



Introduction to Fuzzy Sets  © A. Bonarini (bonarini@elet.polimi.it)  - 17 of 33

α-cuts

The α-cut of a fuzzy set is the crisp set 
of the values of x such that μ(X) ≥ α

αμ

 

(X)= {x | μ(x) ≥
 

α}

μ

α

αμ

 

(X) X
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Support of a fuzzy set

The crisp set of values x of X such that μf (x) > 0 is the 
support of the fuzzy set  f on the universe X 

μ

support X



Introduction to Fuzzy Sets  © A. Bonarini (bonarini@elet.polimi.it)  - 19 of 33

Height of a fuzzy set

The height h(A) of a fuzzy set A on the universe X is the 
highest membership degree of an element of X to the 
fuzzy set μ

Heigth

X

A fuzzy set f is normal iff hf (x)=1



Introduction to Fuzzy Sets  © A. Bonarini (bonarini@elet.polimi.it)  - 20 of 33

Convex fuzzy sets

A fuzzy set is convex iff

μ ( λx1 + (1-λ) x2 ) ≥

 

min [μ (x1 ), μ

 

(x2 )]

for any  x1 , x2 in ℜ and any λ belonging to [0,1]

μ

X1 X2X1 X2

μ
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Complement

μ ¬

 

f (x)=1- μ f (x)

Union

μ f1 ∪

 

f2 
(x) = max (μ f1 

(x), μ f2 
(x)) 

Intersection

μ f1 ∩

 

f2 
(x) = min (μ f1 

(x), μ f2 
(x)) 

Standard operators on fuzzy sets
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Examples of operator application

Complement
1

1

1
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Union

1

1

1
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Union

1

1

1
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Fundamental property of standard operators

Using the standard operators the maximum error is the one 
we have on the operand’s MFs

μ

Xx  
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Complement

c : [0,1] -> [0,1]

c(μA (x)) = μ¬A (x)
Axioms:

1. c(0)=1; c(1)=0   (boundary conditions)

2. For all  a and b in [0,1], if a < b then c(a) ≥

 

c(b)  
(monotonicity)

3. c is a continuous function

4. c is involutive, i.e., c(c(a))=a for all a in [0,1]
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Intersection and T-norms

μA∩B (x) = i[μA (x), μB (x)]
Axioms:

1. i[a, 1]=a   (boundary conditions)

2. d ≥

 

b  implies i(a,d) ≥

 

i(a,b)  (monotonicity)

3. i(b,a) = i(a,b) (commutativity)

4. i(i(a,b),d) = i(a,i(b,d)) (associativity)

5. i is continuous

6. a ≥

 

i(a,a) (sub-idempotency)

7. a1 < a2 and b1 < b2 implies that i (a1 ,b1 )<i(a2 ,b2 )   
(strict monotonicity)



Introduction to Fuzzy Sets  © A. Bonarini (bonarini@elet.polimi.it)  - 28 of 33

T-norms: examples

],,max[ αba
ab

for α=1 we have   ab

for α=0 we have   min(a, b)
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Union and T-conorms (S-norms)

μ A∪B (x) = u[μA (x), μB (x)]
Axioms:

1. u[a, 0]=a   (boundary conditions)

2. b ≤

 

d implies u(a,b) ≤

 

u(a,d)  (monotonicity)

3. u(a,b) = u(b,a) (commutativity)

4. u(a,u(b,d)) = u(u(a,b),d) (associativity)

5. u is continuous

6. u(a,a) ≥

 

a (super-idempotency)

7. a1 < a2 e b1 < b2 implies that u(a1 ,b1 )<u(a2 ,b2 )   (strict 
monotonicity)
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T-conorms: examples
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Aggregation

μA (x) = h[μA1 (x), ..., μAn (x)]
Axioms:

1. h[0,..., 0]=0, h[1,..., 1]=1   (boundary conditions)

2. monotonicity

3. h is continuous

4. h(a,..,a) = a (idempotency)

5. simmetricity
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Properties of aggregation

min (a1 , ..., an ) ≤

 

h(a1 , ..., an ) ≤

 

max (a1 , ..., an )

Example of aggregation operator: generalized average

h(a1 , ..., an ) = (a1
α+ …+ an

α)1/α/ n
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