Decision Trees Pruning
Information Retrieval and Data Mining
Generalization and Overfitting in Decision Trees
The Perfect Fit ...

```
Temperature
  /   
hot  mild  cool
   /     
Outlook
  /   
sunny  rain  overcast
   /   
no  ?  yes
   /   
Humidity
  /   
high  normal
   /   
no  yes
   /   
Windy
  /   
true  false
   /   
no  yes
   /   

Outlook
  /   
sunny  rain  overcast
   /   
yes
   /   
Humidity
  /   
high  normal
   /   
yes
   /   
Windy
  /   
true  false
   /   
no  yes
   /   
```
Avoiding Overfitting in Decision Trees

• The generated tree may overfit the training data
 ▪ Too many branches may reflect anomalies, noise, or outliers
 ▪ Result is in poor accuracy for unseen samples

• Pre-pruning
 ▪ Halt tree construction early
 ▪ Do not split a node if this would result in the goodness measure falling below a threshold (difficult to choose)

• Post-pruning
 ▪ Remove branches from a “fully grown” tree
 ▪ Use a set of data different from the training data to decide which is the “best pruned tree”
Pre-Pruning

• Usually based on statistical significance test

• Stop growing the tree when there is no statistically significant association between any attribute and the class at a particular node

• High risk of premature halt
 ▪ If initially no individual attribute exhibits any interesting information about the class
 ▪ The structure will become visible only in fully expanded tree
 ▪ Pre-pruning won’t expand the root node
Post-Pruning

• First, build full tree, then prune it
 ▪ Fully-grown tree shows all attribute interactions
 ▪ But some subtrees might be due to chance effects

• Two pruning operations
 ▪ Subtree raising
 ▪ Subtree replacement

• Possible strategies to select the subtree
 ▪ Error estimation
 ▪ Significance testing
 ▪ MDL principle
Subtree Raising

- Delete node and redistribute instances
 - Redistribution is slower than replacement
Subtree Replacement

- Works bottom-up
- Consider replacing a tree only after considering all subtrees
Estimating Error Rates (for Pruning)

- Prune only if it reduces the estimated error
 - Error on the training data is NOT a useful estimator (Why it would result in very little pruning?)
 - A hold-out set might be kept for pruning (“reduced-error pruning”)

- Example (C4.5’s method)
 - Derive confidence interval from training data
 - Standard Bernoulli-process-based method
 - Shaky statistical assumptions (based on training data)
 - Use a heuristic limit, derived from this, for pruning
Mean and Variance of Expected Errors

- Mean and variance for a Bernoulli trial are p and $p(1-p)$

- Expected error rate $f = S/N$ for large enough N follows a Normal distribution:

$$f \sim N(p, p(1-p)/N)$$

- The $C\%$ confidence interval $[-z < X < z]$ for random variable with 0 mean is given by:

$$P[-z < X < z] = C$$

- With a symmetric distribution, $C = 1 - 2 \times P[X > z]$
Confidence Limits Normal Distribution

• Confidence limits for the normal distribution with 0 mean and unit variance is …

• Thus:

\[P[-1.65 < X < 1.65] = 90\% \]

• To use this we have to reduce our random variable \(f \) to have 0 mean and unit variance
C4.5’s Pruning Method

• Given the error f on the training data, the upper bound for the error estimate for a node is computed as

$$e = \left(f + \frac{z^2}{2N} + z \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}} \right) / \left(1 + \frac{z^2}{N} \right)$$

• If $c = 50\%$ then $z = 0.69$ (from normal distribution)
 - f is the error on the training data
 - N is the number of instances covered by the leaf
f = 5/14

e = 0.46

e < 0.51

so prune!

Combined using ratios 6:2:6 gives 0.51