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Example: Increasing Sales by Advertising

Salas

Sakbs

Salas

™ Radio Mewspapar

FIGURE 2.1. The Advertising data set. The plot displays sales, in thousands
of units, as a function of TV, radio, and newspaper budgets, in thousands of
dollars, for 200 different markets. In each plot we show the simple least squares
fit of sales to that variable, as described in Chapter 3. In other words, each blue
line represents a stmple model that can be used to predict sales using TV, radio,

and newspaper, respectively.
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What can we ask to the data?

Sales
Sales

™ Radio Mewspaper

° [s there a relationship between advertising budget and sales?

°  How strong (s the relationship between advertising budget and sales?
*  Which media contribute to sales?

*  How accurately can we estimate the effect of each medium on sales?
° [s the relationship linear?

° [s there synergy among the advertising media?

POLITECNICO MILANO 1863 matteo.matteucci@polimi.it



Simple linear regression

Le assume that a linear relationship exists between Y and X
sales~ By + B1 X TV

We say sales regress on TV through some parameters
*  Model coefficients By and 3,
* After training, a new data point can be predicted as

y = Po + b
Given a datasets the coefficient above can be estimated by using least
squares to minimize the Residual Sum of Squares
€i = Yi— Vi
RSS =ef + €3 +--- +¢€?

n

OLITECNICO MILANO 1863 matteo.matteucci@polimi.it



Example: TV Advertising vs Sales

|
aJ

15

Sales

10

o K

IBD 0 50 r00 150 200 250 300

TV

FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Fach grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
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Least squares fitting

Least square fitting minimizes RSS (Residual Sum of Squares)
€ = Yi— Vi
R.SS:eﬁJre%—k---—l—eg_
RSS = (y1 — Bo—fre1)? + (y2— Bo— Brr2)?+. . .+ (yn— Bo— Brin )?

Obtaining the following estimates

A . . Z?:l(.bg — I)(yi - 3})
B — ) —
Bo = A1 Zz’:l(i"i — )2

Where 7=+>"v and =130 o
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Least square solution ...

B
0.05 0.06
| |

0.04
|

0.03
|

FIGURE 3.2. Contour and three-dimensional plots of the RSS on the
Advertising data, using sales as the response and TV as the predictor. The
red dots correspond to the least squares estimates Bo and 1, given by (3.4).
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Least squares fitting
Least square fitting minimizes RSS (Residual

€i =Yi—Yi
RSS =€ +e5+ -

Obtaining the following estimates

Bo=G—pi fy= >im1(@i — T)(yi — 7)
Z?:l(i:i - 5)2
Where v=+>"1v and =131 2

{77) POLITECNICO MILANO 1863

Sum of Squares)

+ 82.
RSS = (11 —_30 —_311’1)2 + (12 —_.30 — _311’2) ...+ (y

—8{)—31J )

But are they
any good?
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Population regression line

Recall from Statistical Learning theory the underlying hypothesis
Y = 5o+ 1 X +€

* B the Y value when X = 0
* [1 the average increase in Y due to unitary increase in X

° the error term captures all the rest ...

This model is known as “population regression line”

* the best linear approximation of the true model
®

° it might differ from the leas N o
['he populdtion regression line stays to the

mean of a distribution as the least squares

regression line stays to the sample mean ...
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Example: population regression line

=
—

o
| Recall here model |
L= . . o
= variance in the i
T . . I I I I I
_»| bias-variance trade-off o 0 1 5
X X

FIGURE 3.3. A simulated data set. Left: The red line represents the true rela-
tionship, f(X) = 2+ 3X, which is known as the population regression line. The
blue line is the least squares line; it is the least squares estimate for f(X) based
on the observed data, shown in black. Right: The population regression line is
again shown in red, and the least squares line in dark blue. In light blue, ten least
squares lines are shoun, each computed on the basis of a separate random set of
observations. Fach least squares line is different, but on average, the least squares
lines are quite close to the population regression line.
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Standard error & linear regression

The (squared) standard error for the mean estimator represents the

average distance of the sample mean from the real mean

0.2

Var(ji) = SE(i1)* = —

T

We have formulae for standard errors of linear regression coefficients

A2 1 T 3.3 o
G’ =t [l e | S =
' =1\t ' =1 t

These formulae assume \‘ The higher the spread of x
the better the estimate

°* uncorrelated errors ...
. . 2 .
* ... having the same (unknown) variance o~ = Var(e)

POLITECNICO MILANO 1863 matteo.matteucci@polimi.it



Parameters confidence intervals

In general, errors variance is not known, but it can be estimated from
residuals (if the model fits properly)

RSE = /RSS/(n — 2)

From standard errors we can compute confidence intervals for the linear
regression parameters, e.qg., the 95% confidence intervals for the
parameters are

Bo+2-SE(By) B1+2-SE(B)

the true slope is, with 95% probability, in the range This should be the 97.5
guantile of a t-distribution
[51 _92.SE(B1), B +2- SE(Sl)]

OLITECNICO MILANO 1863 matteo.matteucci@polimi.it 12



Example: TV Advertising data

. . . Sales without any
It we consider the 95% confidence intervals advertising
° for the intercept we have [6.130,7.9?LI Average impact of

° for the slope we have [0.042,0.053] TV advertising

g By = 0.0475 .+

By = 7.03

} POLITECNICO MILANO 1863 matteo.matteucci@polimi.it 13



Parameters hypothesis testing

Standard errors can be used for hypothesis testing such as:
°  H,: thereis no relationship between Y and X
° H.: there is some relationship between Y and X

This translates on parameters hypothesis testing for
Ho:p1 =0 against Hq: 51 #0
t-distribution with 4df = 5
We do not know true parameters so we ¢-distribution with 4f = 2
can use estimates and perform a

statistical test using 5 |
P S |

SE(54)

OLITECNICO MILANO 1863 matteo.matteucci@polimi.it 14
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Example: TV advertising hypothesis test

We reject the null hypothesis H, if the p-value is small
* p-value is the probability of making a wrong choice

* Usually small is as low as 5% or 1%, these percentages, with N>30 correspond
to t~2 and t~2.75 respectively

* In other fields, p-values might be significantly different, e.g., in bioinformatics
p-values of 10°® are quite common to avoid false discoveries ...

Coefficient  Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model
for the regression of number of units sold on TV advertising budget. An increase
of $1,000 in the T'V advertising budget is associated with an increase in sales by
around 50 units (Recall that the sales variable is in thousands of units, and the
TV variable is in thousands of dollars).

-rjg"i"h.: o o . o
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Accuracy of a model: RSE

The classical measure of fit is mean squared error, in linear regression we

use the Residual Standard Error

TL

RSS = 5 (yi — )

1i=1

RSE = \/ ! RSS =
n—2

How far the model is

/ from least square line
on average

T

1 .
A

1=1

* |t estimates the standard deviation of the errors, i.e., the irreducible error.

Quantity Value
Residual standard error | 3.26 —
R? 0.612
F-statistic 312.1

Compared to the
average sales

3,260/14,000 = 23 %

TABLE 3.2. For the Advertising data, more information about the least squares
model for the regression of number of units sold on TV advertising budget.

LITECNICO MILANO 1863
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Accuracy of a model: R?

We might be interested in computing how much of the data variance is

explained by the model (“relative accuracy” n
’ ! ( y) RS5 = Z(yz‘ — 4i)°
2 _ 155 —Rs55 - RSS =l
o P57 15 = S - o

An R? close to 1 means the data are almost perfectly explained by our
simple linear model, in our case it is just 0.612 ...

Quantity Value

Residual standard error | 3.26 Is this due to the error
R?2 0.612/ noise or to the fact that
F-statistic 312.1 data is not linear?

TABLE 3.2. For the Advertising data, more information about the least squares
model for the regression of number of units sold on TV advertising budget.

matteo.matteucci@polimi.it 18
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What can we ask to the data?

Sales
Sales

™ Radio Mewspaper

° [s there a relationship between advertising budget and sales? @

° How strong is the relationship between advertising budget and sales? @
*  Which media contribute to 50[65?@

*  How accurately can we estimate the effect of each medium on sales?@
° [s the relationship linear? @

* [s there synergy among the advertising media? @
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Multiple linear regression ... the easy (wrong) way

Simple regression of sales on radio

Coeflicient Std. error t-statistic p-value
Intercept 0.312 0.563 16.54 < 0.0001
radio 0.203 0.020 9.92 < 0.0001

Simple regression of sales on newspaper

Coeflicient Std. error t-statistic p-value
Intercept 12.351 0.621 1988 < 0.0001
newspaper 0.055 0.017 3.30 < 0.0001

TABLE 3.3. More simple linear regression models for the Advertising data. Co-
efficients of the simple linear regression model for number of units sold on Top:
radio advertising budget and Bottom: newspaper advertising budget. A $1.000 in-
crease in spending on radio advertising is associated with an average increase in
sales by around 203 units, while the same increase in spending on newspaper ad-
vertising is associated with an average increase in sales by around 55 units (Note
that the sales wvariable is in thousands of units, and the radio and newspaper
variables are in thousands of dollars).

POLITECNICO MILANO 1863 matteo.matteucci@polimi.it
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Multiple linear regression ... the right way

Treating variables as they were independent
*  Does not tell how a sales increase is obtained by changing all input variables
*  Coefficients of each input did not take into account the others in the estimate
* Ifinput are highly correlated, using independent estimates can be misleading

Extend linear regression to consider multiple predictors
sales = [Bg + (51 X TV + B9 X radio + 3 X newspaper + €

More formally we have the multivariate regression

Y — ;“3[] -+ _,81X1 -+ II'BQXQ i .,Bpo + €

POLITECNICO MILANO 1863 matteo.matteucci@polimi.it 22



Example: a two dimensional dataset

1 }!

JYI

FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen

to minimize the sum of the squared vertical distances between each observation
(shown in red) and the plane.

|} POLITECNICO MILANO 1863
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Linear regression

Linear regression parametric model, i.e., the population line
Y — .BD + _|31X1 —+ IBQXQ -+ 1+ -SPXP —+ €

* Each parameters describes the average influence of the associated input
keeping all the others fixed

The regression coefficient can be estimated by least squares fit
RSS = ) (yi— i)

1—=1
Tl

- Z(yz - _.90 - _.31153'1 - ..32;'«51'2 - .-Bpiﬂip)z
i=1

To obtain the least squares predictor
y = Po + P11 + Paxg + - - + Bpap
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Example: Advertising dataset

Coefficient ~ Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

Coeflicient Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.80 < 0.0001
newspaper —0.001 0.0059 —0.18 0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimales of the
multiple linear regression of number of units sold on radio, TV, and newspaper

advertising budgets.
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Example: Advertising dataset

Coeflicient Std. error t-statistic p-value

Intercept 9.312 0.563 16.54 < 0.0001
radio 0.203 0.020 9.92 < 0.0001

Coeflicient Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.80 < 0.0001
newspaper —0.001 0.0059 —0.18 0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimales of the
multiple linear regression of number of units sold on radio, TV, and newspaper

advertising budgets.
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Example: Advertising dataset

Coefficient Std. error t-statistic p-value
Intercept 12.351 0.621 19.88 < 0.0001
newspaper 0.055 0.017 3.30 | < 0.0001 |

Coeflicient Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 0.0001
newspaper —0.001 0.0059 —0.18 | 0.8599 |

TABLE 3.4. For the Advertising data, least squares coefficient estimales of the
multiple linear regression of number of units sold on radio, TV, and newspaper
advertising budgets.
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Correlation between attributes

TV radio  newspaper sales
TV 1.0000  0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000

TABLE 3.5. Correlation matriz for TV, radio, newspaper, and sales for the
Advertising data.

Let consider correlations between input and output variables

* |f we increase radio then sales increase

*  Radio and newspaper are highly correla SHGIKS GUGCKS GreiCOTTeldied io
ice cream sales at the beach ...

° If we increase radio then newspaper incre

The increase on sales is correlate to the increase of newspaper is due to
radio, not to the fact that newspaper increases sales

o
o e,
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Computing linear regression coefficients (1)

Computing the least regression fit can be done easily using linear algebra

Recall here N
RSS(B) = > (ui— f(@:))
1;1 , :
BB S URE »)

By taking into account that
*  Xisan N x (p+1) data matrix
* yis N x 1vector of desired output
°* Bisa(p+1) x 1vector of model coefficients

We can rewrite the Residuals Sums of Squares as
RSS(8) = (y — X3)' (y — XB)
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Computing linear regression coefficients (2)

We want to minimize RSS(8) = (y — X3)T (y — X3)

Let's compute the RSS derivatives with respect to

ORSS
3

H2RSS
93057

= 2XT(y — X13) = 2X"X

Assuming X has full rank and XX >0 we have just to compare the first
derivative to zero

. XT (y — X3) = Pseudo
Val‘(ﬁ) = (X X) a l\é B @ Inverse

In matrix algebra terms the prediction becomes
y=X0=XX"X)"'XTy
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Let's rephrase the questions in a multivariate setting

Sales
Salas

* Is at least one of the predictors X;, ..., X, useful in predicting the response?
* Do all the predictors help to explain Y, or it is only a subset of the predictors?
*  How well does the model fit the data?

* Given a set of predictor values, what response value should we predict, and
accurate (s our prediction?

POLITECNICO MILANO 1863 matteo.matteucci@polimi.it 31



Hypothesis testing on multiple parameters

s there any relationship between response and predictors?
Ho:61=0P2=---=p0,=0 against H, : at least one [3; 1s non-zero

This test is performed using the F-statistics

~_(TSS —RSS)/p n -
TSS =3 2(vi — 9)° %ss T p— 1~ | B35 =2 (s — i)

1=1

T the linear model assumptions are valid
E{RSS/(n—p—1)} = o*
° whenHgistrue E{(TSS —RSS)/p} =0> then F~1T
° whenH,istrue FE{(TSS —RSS)/p} > % then F>1T
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Example: Advertising dataset

Quantity Value

Residual standard error | 1.69

R? 0.897 F>1
F-statistic 570

TABLE 3.6. More information about the least squares model for the regression
of number of units sold on TV, newspaper, and radio advertising budgets in the
Advertising data. Other information about this model was displayed in Table 3.4.

——

bonte

! F(an , dt:)
4
F Table for a = 05 i
Fis well above 1, a relationship exists! |
N VR O Y 0 ]
df;=1| 161 45| 199,50 215 71 | 224 58| 23016 | 232,98 236 77 236,68 | 0 54 24183 |
2 | 1851 | 1900 | 19.16 | 1925 ] 19.30 | 1933 | 19.35/ 19.37 [|9.38 $19.40
3 101395 | 928 (o1 Twos | 889 | 885 [1851 L 87
4 | 771 | 694 659 0 | 604 [lE® 5% |
5 |81 [ 579 541 H P [0 A | Xl
£ B £
How much should be F to tell N SN N N W LA BT N | LN AT
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Testing for subsets of variables

We can test also a subset of the variables
H[] . Iﬁp_q_|_1 — .-Sp—q—I—Q — ... = 3}9 =0
The novel F-statistics for the model fitted on g variables is
(RSSp — RSS)/q

RSS of the model F = fTSS . = RSS of the model with
without the q variables SS/(n—p— all the variables
T we leave out one variable at the time (g=7) we obtain an equivalent
formulation of the t-statistics for single parameters

* F-statistics is more accurate than t-statistics computed for each parameter
since it corrects for other parameters

* |t tells you the partial effect of adding that specific variable to the model
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Spurious correlations

I the number of factors p is big, p-values might be tricky

*  With p=100 and H, true, ~5% of the p=values (by chance) will be lower than
0.05 and we might see 5 predictors associated (by chance) to the response

* F statistic is not affected by the number of factors p in the model

Coefficient Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.80 < 0.0001
newspaper —0.001 0.0059 —0.18 0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the
multiple linear regression of number of units sold on radio, TV, and newspaper
advertising budgets.
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Example: Credit Predictors

) il -
In the Credit dataset o |
* 7 quantitative N R S
* 4 qualitative | = | = | =l =
Qualitative ones e I
* Student (Binary status) | | T | e | e | B | %
* Status (Binary marital) Al e ) / :
* Ethnicity (Caucasian, African i 1| JHHF ﬁ? / natng

American, Asian) e Tl B B
FIGURE 3.6. The Credit dafa sel contains information about balance, age,
cards, education, income, limit, and rating for a number of polential cus-
tomers.
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Qualitative Predictors (Two Levels)

Two Levels qualitative predictors can be coded using Dummy Variables

) 1 if 2th person is female
l~[} if ¢th person is male,
. . ) ) . Average difference of balance
This results in a “double” model for regres between males and females

Bo + 51 + €; if 2th person is female
Yi = Po + frzi + € = o b

By + €; if 7th person is male.
Average balance
among males | Coefficient  Std. error t-statistic p-value
Intercept 509.80 33.13 15.380 <O
gender [Fenale] 19.73 46.05 0.429 6228%
NN —

TABLE 3.7. Least squares coefficient estimates associated with the regression of
balance onto gender in the Credit data set. The linear model is given in (3.27).
That is, gender is encoded as a dummy variable, as in (3.26).
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Other Coding for Two Levels

Other possible coding can be devised for Dummy Variables
{1 if ¢th person is female
Lq —

—1 if 7th person is male

In this case the model becomes

Bo + B1 + €; if 7th person is female
yi=Bo+Bri+e =4 """ . P .
Bo — B1 + € if ¢th person is male.

Average balance AN

Amount of balance females are above
the average and males are below ...

No significant impact on the regression output, but on the interpretation
of the coefficients ...
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Qualitative Predictors (More Levels)

More than 2 levels are handled by using L-1 dummy labels

1

L1 = S
0

.

r
1

Li2 = S
0

This again results in a “multiple output’|  Average difference between

if 7th person is Asian

if 7th person is not Asian,

if 7th person is Caucasian

if ith person is not Caucasian.

African Americans and Asian
’,8.:.—|—/81 +¢€; if ith person is Asian

Yi = Bo+Pirrii+P2ri2+€ = § Po+P2+€;  if ith person is Caucasian

Average balance for
African American

LITECNICO MILANO 1863

Bo-¢€; if 7th person is African American

Average difference between
African Americans and Caucasians
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Qualitative Predictors (More Levels)

Coefficient  Std. error t-statistic p-value
Intercept 531.00 46.32 11.464 < 0.0001
ethnicity[Asian] —18.69 65.02  —0.287 C0.77400
ethnicity[Caucasian] —12.50 56.68 —0.221 0.8260

TABLE 3.8. Least squares coefficient estimates associated with the regression
of balance onto ethnicity in the Credit data set. The linear model is given in
(3.30). That is, ethnicity is encoded via two dummy variables (3.28) and (3.29).

This again| The non coded level is /Output” model

defined baseline

[ Bo+[u+€; if ith person is Asian

Yi = PBo+1xin+Paxiote; = { PBo+Pa+e;  if ith person is Caucasian

 Bo+e; if ith person is African American
| F-statistics
Hy: 031 =08=0
0 pr =P || p-value 0.96
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Variables Interactions (or Sinergies)

So far the linear regression model has assumed
* Linear relationship between predictor and response
* Additive relationship between predictor and response

1 Sales

This effect in marketing
IS known as sinergy

The “slope” of TV
/_ P

Increases because of an
Increase in radio budget

What if allocating half the budget

to TV and Radio would increase

the sales more than putting it all
on one of the two?

} POLITECNICO MILANO 1863 matteo.matteucci@polimi.it 42



Variable Interactions (continued)

Let consider the classical Linear Regression

mode]

Y = 3[] + .-Ble + IBQXQ + €

* Anincrease in X1 of Tunit increases Y on average by (31 units

*  Presence or absence of other variables does not affect this

We can extend the previous model with an
Y = Bg+ 51X1 + B2 Xo +

This translates in a “linear model”
Y = [Go+ (5

INteraction term

I31X1 X‘} 1 €

One variable affects other
variables influence

,ﬁng)Xl -+ _,BQXQ + €

— .SD -+ Iﬁéle —+ I,SQXQ + €

OLITECNICO MILANO 1863
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Example: Interaction between TV and Radio

We can imagine some interaction in TV and Radio Advertising
sales = [p+ B1 X TV+ (B2 X radio + 33 X (radio X TV) + €
=  [o+ (B + B3 X radio) X TV + (B3 X radio + e.
* Interaction term is the increase of effectiveness of TV for one unit of Radio
* p-value suggests this interaction to be significant
* R?increases from 89.7% to 96.8% (69% of missing variance)

Coefficient  Std. error t-statistic p-value
Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TVXradio 0.0011 0.000 20.73 < 0.0001

TABLE 3.9. For the Advertising data, least squares coefficient estimates asso-
ciated with the regression of sales onto TV and radio, with an interaction term,
as in (3.33).
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Example: MpG Polynomial Regression

o
L

= Linear
— Degree 2
— Degree 5

Miles per gallon

Horsepower

FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are
shown. The linear regression fit is shown in orange. The linear regression fit for a
model that includes horsepower? is shown as a blue curve. The linear regression
fit for a model that includes all polynomials of horsepower up to fifth-degree is
shown in green.
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Non Linear Fitting via Generalized Linear Models

We can use Polynomial Regression to accomodate non linearity

mpg = 3y + 31 X horsepower + (35 X horsepower” + €

° tis still a linear fitting problem !!!
* A 5™ grade polynome is too much, but quadratic term is statistically significant

Coefficient Std. error t-statistic p-value
Intercept 56.9001 1.8004 31.6 < 0.0001
horsepower —0.4662 0.0311 —15.0 < 0.0001
horsepower” 0.0012 0.0001 10.1 < 0.0001

TABLE 3.10. For the Auto data set, least squares coefficient estimates associated
with the regression of mpg onto horsepower and horsepower=.

LITECNICO MILANO 1863 matteo.matteucci@polimi.it



Potential Problems in Linear Regression

A number of possible problems might be encountered when fitting the
linear regression model.

* Non-linearity of the data

*  Dependence of the error terms

* Non-constant variance of error terms

*  Qutliers

* High leverage points

*  (Collinearity

In practice, identifying and overcoming these problems is as much an
art as a science. Many pages in countless books have been written on this
topic. Since the linear regression model is not our primary focus here, we
will provide only a brief summary of some key points.
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Non Linearity of the Data

It the linearity assumption does not hold, conclusions might be inaccurate

Check residual plot!

Try to use non linear
transformations of the predictor
(log X, X2, sgrt(X), ...)

Residuals

LITECNICO MILANO 1863
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0

-15 -1

Residual Plot for Linear Fit

\

10 15 20 25 30

Fitted values

Hesiduals

5 10 15

0

-15 10 -5

Residual Plot for Quadratic Fit

334

323

155

I I I I
20 25 30 35

Fitted values

FIGURE 3.9. Plots of residuals versus predicted (or fitted) values for the Auto
data set. In each plot, the red line 1s a smooth fit to the residuals, intended to make
it easier to identify a trend. Left: A linear regression of mpg on horsepower. A
strong pattern in the residuals indicates non-linearity in the data. Right: A linear
regression of mpg on horsepower and horsepower>. There is little pattern in the

residuals.
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Non Constant Variance of Error Term

Linear Regression assumes no heteroscedasticity in the noise

Response Y Hesponse log(Y)
w _|
— 1:]' _ .
=1 o
E _ . ."'."_i.::':
= i
Tk
w - = -
= 4 © M
8 = i .
E = T TI-P‘ g - . :1-
i T 1
- [n’
"‘F — v — e
7 8057
w0
D .
T 7 -
2437
=
| | | | | T T | T | | |
10 15 20 25 a0 2.4 2.6 2.8 3.0 3.2 3.4
Fitted values Fitted values

FIGURE 3.11. Residual plots. In each plot, the red line is a smooth fit to the
residuals, intended to make it easier to identify a trend. The blue lines track the
outer quantiles of the residuals, and emphasize patterns. Left: The funnel shape
indicates heteroscedasticity. Right: The predictor has been log-transformed, and
there is now no evidence of heteroscedasticity.
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Presence of outliers

An outlier is a point that is too far from its prediction
* Might be due to error in data collection (just remove it)
°  Might be due to some missing predictors (revise the model)

T o — 20

Hesiduals
Studentized Aesdduals
2
]

- o0 g
T o 0o o
& oom {E;u a a
o _QC%Q s - _%@C@ﬁ
o
T 0 Dgl 0 %D Q 8 0 Dﬁ o %Dﬂ %
o o o o
| | | | | | | | | |
2 0 2 4 B 2 0 2 4 g
X Fittad Values Fitted Values

FIGURE 3.12. Left: The least squares regression line 18 shoun in red, and the
regression line after removing the outlier is shoun in blue. Center: The residual
plot clearly identifies the outlier. Right: The outlier has a studentized residual of
6; typically we expect values between —3 and 3.
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High Leverage Points

High leverage points have unexpected values for a predictor

LY

i
-
- Mo
o

Studentized Residuals

T T T T T T
000 005 040 045 020 025

X Xy Lewarage

FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not.
The red line is the fit to all the data, and the blue line is the fit with observation
41 removed. Center: The red observation is not unusual in terms of its X1 value
or its Xo wvalue, but still falls outside the bulk of the data, and hence has high
leverage. Right: Observation 41 has a high leverage and a high residual.

Leverage statistics (between 1/n and 1, average (p+1)/n)
1 (:I,'i—i‘)z

T n Doz —x)?
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Dependence of the Error Term

Errors are supposed to be
uncorrelated otherwise standard
errors would underestimate

true errors ...

Tracking phenomenon

Residual

Resicual

Residual
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FIGURE 3.10. Plots of residuals from simulated time series data sets generated
with differing levels of correlation p between error terms for adjacent time points.
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Colinearity

Factors might be highly related, becomes difficult to separate their effects

w —
A o
a0 0
w =
= &
oy o
o
I |' I I I - I I
016 017 0.18 019 0.1 0.0 oA 0.2
.ﬁLimit .ﬁLimit

FIGURE 3.15. Contour plots for the RSS values as a function of the parameters
B for various regressions involving the Credit data set. In each plot, the black
dots represent the coefficient values corresponding to the minimum RSS. Left:
A contour plot of RSS for the regression of balance onto age and limit. The
minimum value is well defined. Right: A contour plot of RSS for the regression
of balance onto rating and limit. Because of the collinearity, there are many
pairs (Primits Orating) with a similar value for RSS.
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What can we ask to the data?

wr _J
(=] L=

Sales
Sales

1] 10 20 30 40 50 1] 20 40 60 80 100

™ Radio Newspaper

° [s there a relationship between advertising budget and sales?

°  How strong (s the relationship between advertising budget and sales?
*  Which media contribute to sales?

*  How accurately can we estimate the effect of each medium on sales?
°  How accurately can we predict future sales?

° [s the relationship linear?

° [s there synergy among the advertising media?
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Improved Linear Regression

We can devise alternative procedures to least squares

* Improve prediction accuracy: if number of data is limited (or p is big) we might
have “low bias” but too "high variance” (overfitting) and a poor prediction

* Improve model interpretability: irrelevant variables, beside impacting on
accuracy, make models unnecessary complex and difficult to interpret

Several alternatives to remove unnecessary features (predictors)
* Subset Selection: selection of the input variables
* Shrinkage (or regularization): reduction of model variance
* Dimension reduction: projection on an input subspace
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Variable selection

Select the variables which are really associated to the prediction

* Exhaustive exploration of model space (ZP)\
*  Forward selection

If p=30 the number of possible
models is 1.073.741.824

* Backward selection

*  Mixed selection

Exhaustive exploration is unfeasible because of exponential complexity
* Y =P
© Y =B+ By Xy /_ Different possible metrics, e.g.,

C,, AIC, BIC, adjusted R?
* Y =PFot f2xX;

* Y=L+ B xXy+ L2 xX;
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Recall the Bias-Variance trade-off

For a Linear Model|

Err(zo) = E[(Y — f1)?|X = z]
o + [ (o) ~ Bf ()] +[I(zo)|%0?

% Z Err(x;) = 0 + % Z[f(m.;) — Efﬁ[:;trt)]2
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Best Subset Selection

Fit a least squares regression for any possible input combination
* A total of 2" need to be compared
° Best Subset Selection introduces a procedure to evaluate them systematically

Algorithm 6.1 Best subset selection

1. Let Mgy denote the null model, which contains no predictors. This
model simply predicts the sample mean for each observation.

2. For k=1.2,...p:

(a) Fit all (?) models that contain exactly k predictors.

(b) Pick the best among these (}) models, and call it M. Here best
is defined as having the smallest RS st 72

Cross-validated

3. Select a single best mo rom ambi| Prediction error!
validated prediction error, C), (AIC), BIC, or adjusted R?.

Cross-
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Example: Credit data best subset selection

o

F= 1 ' ' ¥ M 3 . ]
%_- 1 (] ] . [ [ "
3 @ | { v v v
sl trill i A
N o
5 R? keeps increasing
c% % with used variables
E =I | =
=30
k= : N
25 . RSS keeps dec_reasmg Lo
o g e 44 with used variables
¥ ] [] ] T . gl ] [} ¥
C— o= ' ' ' # - . E—l ] L] ¥ [ ] ' *
| [ | | [ [ | | | |
2 4 ] 8 10 2 4 6 8 10
Number of Predictors Number of Predictors

FIGURE 6.1. For each possible model containing a subset of the ten predictors
in the Credit data set, the RSS and R? are displayed. The red frontier tracks the
best model for a given number of predictors, according to RSS and R*. Though
the data set contains only ten predictors, the x-axis ranges from 1 to 11, since one
of the variables is categorical and takes on three values, leading to the creation of
two dummy variables.
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Forward Stepwise Selection

Forward stepwise selection is a computationally efficient alternative
* Starts from an empty model with no predictors
° Adds one predictor at the time until “all are in”
* At each stage adds “most improving” variable

Algorithm 6.2 Forward stepwise selection

1. Let Mg denote the null model, which contains no predictors.
2. For k=0.....p—1:

(a) Consider all p — k£ models that augment the predictors in My
with one additional predictor.

(b) Choose the best among these p — k models, and call it M.
Here best is defined as having smallest RSS or highest R?.

3. Select a single best model from among My,..., M, using cross-
validated prediction error, €', (AIC), BIC, or adjusted R?.
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Forward Stepwise vs Best Subset Selection

Forward Stepwise is a greedy approach
*  Needs to fit 1+p(p+1)/2 models instead of 2°
° It can be used also when n < p (it will stop with k<n variables)
° It does not “reconsider” its choices and might result in a suboptimal subset

# Variables

Best subset

Forward stepwise

One
Two
Three

Four

rating

rating, income

rating, income, student
cards, income

student, limit

rating

rating, income

rating, income, student
rating, income,

student, limit

TABLE 6.1. The first four selected models for best subset selection and forward
stepwise selection on the Credit data set. The first three models are identical but

the fourth models differ.
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Backward Stepwise Selection

Backward stepwise selection is yet computationally efficient
* Starts from the model having all predictors
* At each stage removes the “least useful” variable

Algorithm 6.3 Backward stepwise selection

1. Let M, denote the full model, which contains all p predictors.

2. Fork=p.p—1....,1:

(a) Consider all k£ models that contain all but one of the predictors
in M., for a total of &£ — 1 predictors.

(b) Choose the best among these k models, and call it Mj_,. Here
best is defined as having smallest RSS or highest R2.

3. Select a single best model from among My,..., M, using cross-

validated prediction error, C}, (AIC), BIC, or adjusted RZ.

* Greedy as Forward Stepwise, but cannot be used when n < p
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Choosing the Optimal Model (theory)

Feature subset selection algorithms “optimize” the number of features
according to RSS and R?, but what about the test set?

Several approaches estimate test error correcting the training error

*  Mallows CP O — l (RBB n 2&?2/‘ d = number of predictors

T

&2 = estimate of the variance
associated to the complete model

1 X
no?2 Some constants omitted,
) . ) . but proportional to C
* Bayesian Information Criterion Prop i

* Akaike Information Criterion

Strong statistical background

Some constants omitted,
more stringent than Cp

BIC — © (RSS + log(n)da?)

- T

° Adjusted R° RSS/(n—d—1)
. 2 4 AW :
Adjusted R* =1 TSS/(n = 1) \l

RSS

Equivalentto —+=;
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Example: Credit data feature selection
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FIGURE 6.2. C,, BIC, and adjusted R* are shown for the best models of each
size for the Credit data set (the lower frontier in Figure 6.1). C, and BIC are
estimates of test MSE. In the middle plot we see that the BIC' estimate of test
error shows an increase after four variables are selected. The other two plots are
rather flat after four variables are included.
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Choosing the Optimal Model (practice)

We can use data itself to estimate the error on new data
* We can use an hold out set and perform validation

!

FIGURE 5.1. A schematic display of the validation set approach. A set of n
observations are randomly split into a training set (shoum in blue, containing
observations 7, 22, and 13, among others) and a validation set {shoum in beige,
and containing observation 91, among others). The statistical learning method is
fit on the training set, and its performance is evaluated on the validation set.

123

72213 91
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Choosing the Optimal Model (practice)

We can use data itself to estimate the error on new data
* We can use an hold out set and perform validation
*  We can use k-fold cross-validation

123 m
11765 a7
11765 a7
11765 a7
11765 a7
11765 a7

FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations s
randomly split mto five non-overlapping groups. Fach of these fifths acts as a
validation set (shoum in beige), and the remainder as a training set (shoum in
blue). The test error is estimated by averaging the five resulting MSE estimates.

LITECNICO MILANO 1863 matteo.matteucci@polimi.it 68



Example: Credit data feature selection

Square Root of BIC
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FIGURE 6.3. For the Credit data set, three quantities are displayed for the
best model containing d predictors, for d ranging from 1 to 11. The overall best
model, based on each of these quantities, is shown as a blue cross. Leftt: Square
root of BIC. Center: Validation set errors. Right: Cross-validation errors.
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Improved Linear Regression

We can devise alternative procedures to least squares

* Improve prediction accuracy: if number of data is limited (or p is big) we might
have “low bias” but too "high variance” (overfitting) and a poor prediction

* Improve model interpretability: irrelevant variables, beside impacting on
accuracy, make models unnecessary complex and difficult to interpret

Several alternatives to remove unnecessary features (predictors)
* Subset Selection: selection of the input variables
* Shrinkage (or regularization): reduction of model variance
* Dimension reduction: projection on an input subspace
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Shrinkage Methods: Ridge Regression

Ordinary Least Squares (OLS) minimizes

2
n p
RSS=)" (yz- —Bo—) B TJ)
71=1

1=1

Ridge Regression minimizes a slightly different function

mn

2
P P P
Y (yi — B — Z;ajmij) +A) BF=RSS+A)

1=1 71=1

° A > 0lsatuning parameter to be estimated experimentally

* Shrinkage does not apply to intercept, with centered variables
Bo=y=7 i ¥i/n

» AX2; 5 s called shrinkage penalty

° as A — oo parameters shrink to zero
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Example: Ridge Regression on Credit data

Standardized Coefficients

l\mn
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FIGURE 6.4. The standardized ridge regression coefficients are displayed for

the Credit data set, as a function of A and Hé’f“z/”/@”z
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Ridge Regression vs. Ordinary Least Squares

Ridge regression improves OLS because of a reduced model variance
(i.e., a better bias-variance trade-off)

f_____.

J

Mean Squared Error
Mean Squared Error

1e-01 1e+01 1&:3_ p:45, n:50 ).2 Ao.4 i).e 0.8 1.0
A 18%112/11812

FIGURE 6.5. Squared bias (black), variance (green), and test mean squared
error (purple) for the ridge regression predictions on a simulated data set, as a
function of X and ||3%||2/||3||z. The horizontal dashed lines indicate the minimum
possible MSE. The purple crosses indicate the ridge regression models for which

the MSFE is smallest.
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Shrinkage Methods: The Lasso

Ridge regression more efficient than subset selection, uses all the p input
The Lasso is an alternative to shrink regression coefficients

T

2
p p p
> Nwi—Bo=) Bjxy | +A) 18;] =RSS+A) |5l
1=1 J=1 1=1 1=1

* The ||5]l1 = > |3;| forces coefficients to be exactly zero

* The Lasso performs variable section
* Models are simpler, sparse, and easy to interpret
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Example: The Lasso and the Credit data
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FIGURE 6.6. The standardized lasso coefficients on the Credit data set are
shown as a function of A and |55 ||1/]153]|1.
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Another interpretation of shrinkage

We can show that Ridge regression solves the problem

2 )
P p
Yi — Bo — Z Bjxi; > subject to Z 3? < 5

4

miniénize §

\

mn

2.

1i=1

/

While The Lasso solves the problem

2)
P p
(yi — Bo — Z%mij) > subject to Z 55| < s
j=1

minimize {

4

minimize <
B

\
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They approximate the Best Subset Selection

mn

2

1=1

/

2
r
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How can Lasso select variables?

B2

B

FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-

gions, |B1| + |B2| < s and Bf + B3 < s, while the red ellipses are the contours of
the RSS.
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Lasso vs. Ridge Regression (p=45 all useful)
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FIGURE 6.8. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso on a simulated data set. Right: Comparison of squared bias,
variance and test MSE between lasso (solid) and ridge (dashed). Both are plotted
against their R? on the training data, as a common form of indexing. The crosses
in both plots indicate the lasso model for which the MSE is smallest.
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Lasso vs. Ridge Regression (p=2 only
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FIGURE 6.9. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso. The simulated data is similar to that in Figure 6.8, except
that now only two predictors are related to the response. Right: Comparison of

squared bias, variance and test MSE between

lasso (solid) and ridge (dashed).

Both are plotted against their R* on the training data, as a common form of
indexing. The crosses in both plots indicate the lasso model for which the MSE is

smallest.

ITECNICO MILANO 1863

matteo.matteucci@polimi.it



Selection of the tuning parameter (Ridge)
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FIGURE 6.12. Left: Cross-validation errors that result from applying ridge
regression to the Credit data set with various value of A. Right: The coefficient

estimates as a function of A. The vertical dashed lines indicate the value of A
selected by cross-validation.
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Selection of the tuning parameter (Lasso)
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FIGURE 6.13. Left: Ten-fold cross-validation MSE for the lasso, applied to
the sparse simulated data set from Figure 6.9. Right: The corresponding lasso
coefficient estimates are displayed. The vertical dashed lines indicate the lasso fit
for which the cross-validation error is smallest.
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Bayesian interpretation

The posterior for the coefficients can be written as
p(BIX.Y) o« f(Y|X, B)p(B|1X) = fF(Y|X, 5)p(B)

Assuming the usual linear model v = 3o+ X181 +... + X3, + ¢
* Having independent errors drawn from a normal distribution

f we assume p(3) =TT, 9(3;)

* Ridge regression: we assume a Gaussian prior with zero mean and variance
being a function of lambda

* [asso: we assume a double-exponential (Laplace) with zero mean and scale
parameter a function of lambda
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Ridge and Lasso priors ...
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FIGURE 6.11. Left: Ridge regression is the posterior mode for 3 under a Gaus-
sian prior. Right: The lasso is the posterior mode for 5 under a double-exponential
Prior.
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