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Sequence Modeling

So far we have considered only «static» datasets
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Sequence Modeling

So far we have considered only «static» datasets
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Sequence Modeling

Different ways to deal with «dynamic» data:

Memoryless models (fixed lag):
* Autoregressive models @
* Feedforward neural networks

Models with memory (unlimited):

* Linear dynamical systems @
* Hidden Markov models — = I\ =/

* Recurrent Neural Networks { X, J” x, [ x \[ X, |

time”
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Memoryless Models for Sequences (1/2)

Wi,
- NN
Autoregressive models ; . . : /\)‘(
* Predict the next input from [ O }[ 1 }[ 2 J[ 3 J
previous ones using «delay taps» We-a
NA \_/

Linear models with fixed lag
* Predict the next output from Wey /W,
previous Inputs using y X X X
«delay taps» [ o M 1 J[ 2 M 3 }
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Memoryless Models for Sequences (2/2)

Hidden
Feed forward neural networks [ J
* (Generalize autoregressive models

using non linear hidden layers [ %o J[ X J[ X M % }

time
Feed forward neural networks (v, ][ Y, ][ v, |[ v,
with delays ) Veal
* Predict the next output from ] Hidden )

previous inputs and previous A7 A

outputs using «delay taps» [ X, J[ X, M X, M X4 }
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Dynamical Systems (Models with Memory)

Generative models with a hidden state which cannot be observed directly

* The hidden state has some dynamics possibly @ @ @
affected by noise and produces the output 5 5 5

* To compute the output need to infer hidden state ) )
* Input are treated as driving inputs g . % SRR, g
L I I

In linear dynamical systems this becomes: —_ &= ——
* State continuous with Gaussian uncertainty X, X, X,

* Transformations are assumed to be linear D D

* State can be estimated using Kalman filtering .

time

0..
Stochastic systems ...
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Dynamical Systems (Models with Memory)

Generative models with a hidden state which cannot be observed directly

* The hidden state has some dynamics possibl
affected by noise and producyes the oﬁtput ' @ @ @
* To compute the output need to infer hidden state [ )
* Input are treated as driving inputs g A % N ) g
I I I
INn hidden Markov models this becomes: —_— —

* State assumed to be discrete, state transitions
are stochastic (transition matrix)

* Qutput is a stochastic function of hidden states

* State can be estimated via Viterbi algorithm. +eg time~
Stochastic systems ...

y
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Recurrent Neural networks

Memory via recurrent connections:

* Distributed hidden state allows
to store information efficiently

* Non-linear dynamics allows
complex hidden state updates

“With enough neurons and time, RNNs
can compute anything that can be
computed by a computer.”

(Computation Beyond the Turing Limit
Hava T. Siegelmann, 1995)
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Recurrent Neural networks

Memory via recurrent connections:

* Distributed hidden state allows
to store information efficiently

* Non-linear dynamics allows
complex hidden state updates

B
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Backpropagation Through Time




Backpropagation Through Time
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Backpropagation Through Time

* Perform network unroll for U steps
° Initialize Wg, V5 replicas to be the same

* Compute gradients and update replicas
with the average of their gradients

U _
1 o0E 1 JE!

Ve =Vs =Ny 2, Gyiu
u= B

0




How much should we go back in time?

Jane walked into the room. John walked in too.
It was late in the day. Jane said hi to <???>

However backpropagation through
time was not able to train recurrent
neural ngtvvorks significantly ,
back in time ...

VA
O

Was due to not being able to
backprop through many: layers ...

ct (xt, ngl), ct-1 V]gl))

i
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How much can we go back in time?

To better understand why it was not working consider a simplified case:

ht = h(v® - pt=1 £ WD . ) . yt = g(w@ . ht)

Backpropagation over an entire sequence S is computed as

S t t £ 1k et t
6_E _ % 6E 0E ath oh dh; _ 1_[ vOp (p® . pi=1 4 @ . x)
t=1

ow 0 t dh\Qhk Fr 0h;_q

i=k+1 i=k+1

It (v - vo) < 1this

If we consider the norm of these terms

dh; Oht
oh;_, dhk

converges to 0 ...
.®

— (Vv }/hl)t k

With Sigmolds and Tanh we
have vanishing gradients

< [POIRON - H
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Which Activation Function?

3.0

25p
L0k _

05
-10
) A (N

-3.0!

Sigmoid activation function Tanh activation function

1 _exp(a) — exp(—a)

g(a) = 1+ exp(—a) g(a) = exp(a) + exp(—a)
g'(a) = g(a)(1 — g(a)) g'(a) =1-g(a)?

o - 1 exp(0)
90 =gO(1-g(®)= 1+ exp(0) 1+ exp(0)

, (0)—exp(0) 2
50 =10 =1 - (222
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Dealing with Vanishing Gradient

10,

Force all gradients to be either O or 1

g(a) = ReLu(a) = max(0,a)
g'(a)

— 1a>0

—10 10

Build Recurrent Neural Networks using small modules that are designed
to remember values for a long time.

ht = U(l)ht_l + W(1)x . yt — g(W(Z) . ht)

It only accumulates
the input ...
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Long Short-Term Memories (LSTM)

Hochreiter & Schmidhuber (1997) solved the problem of vanishing

gradient designing a memory cell using logistic and linear units with
multiplicative interactions: .
netcj S, =S +gVy" ye
. . In h l:tuti
* Information gets into the cell ™ é 9 :@%@ YU 7
whenever its “write” gate is on. 7 ? ‘ }_;
* The information stays in the cell We, y" @ yo @ B
so long as its "keep” gate is on. net,, net..,
g. . /D g w'":'ﬁ/l\\ w‘"‘“]'ﬂ1\\
* Information is read from the cell
) . U /) Figure 1: Architecture of memory cell ¢; (the box) and its gate unils in;, out;. The self-recurrent
by turﬂlﬂg on |tS /’€Cld gate connection (with weight 1.0) indicates feedback with a delay of 1 time step. It builds the basis of
¢ ®constant error carrousel” CEC. The gate units open and close access to CEC. See text and
appendiz A.1 for details.

Can backpropagate
through this since the

loop has fixed weight.
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RNN vs. LSTM

t t t
(" N\ N ) I H
RNN —> ( > —> a}i = Zwihfffﬁ + Z whfthTl
A A =1 h/=1
. Y, J Y, b% — 9}1(0’%)

I
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LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory

@ @ (? it = 0 (Wi[he—1, 2] + bi)
)

Y
il Tj i N ( Cy = tanh(Wo-[hi—1,2:] + be)
LSTM A *_’i ’ ? " A ~ fi =0 Wy [hi—1,2¢] + by)
& L 1 [¢] (o) (g IR} IR Cr = fix Ciy + iy % Cy
| | or =0 (W, [he—1,7¢] + bo)

@ @ @ ht = 0y * tanh (Ot)

!
i

1 O — > <]

Neural Network Pointwise Vector
Layer Operation Transfer Concatenate Copy
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LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory

|ﬂpUt gate @ @ ? [ 1y = J(Wi'[ht—ljmf] + bi) J
)

A
- T\ s N éﬁ = tanh(Weg-hi—1,2¢] + be)
—>—® ® > —>
LSTM A T) A fo=0 Wy [hi—v1,24] + by)
o] [@nn] [0] Ct=ft*Ct—1+ﬂ't*ét
\ o T >
| I Ot = J(Wo [ht—lamt] + bo)
@ @ @ ht = 0y * tanh (Ct)

1w =0 (Wi‘[ht—laﬂ%] + b;)

h Cr = tanh(We [he—1, 2] + be)

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory

Forget gate GTQ

@ @ it = o (Wi-[hi—1,2¢] + b;)

2 N\

N N Gy =tanh(We-[he—1, 2] + be)

LSTM

Ctzft*ct—]+it*ét

N
@b fo=0 Wy [hi—v1,24] + by)
A I?Ilﬁ%h” A +[ f r f ]

fi

Tt
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| O = O'(Wo [ht_l,ﬂlt] + bo)
@ ht = 0y * tanh (Ct)

fo=0Wy-lhi—1,2¢] + by)

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory

Memory gate QTQ ®) ‘ﬁ% iv = o (Wi-lher, 2] + b)
)

A
-~ N O N éﬁ =ta,nh(Wg-[ht_1,:rt] + bC‘)
— e (X O, > —>
LSTM A 4 %Y A fr =0 Wy [hi—1,24] + by)
o] [o] [Grm] (o [Cﬁ:ft*a_ﬁwt*a ]
— > -
\J J \ J

| | o =0 (Wy [hi—1,2¢] + bo)

@ @ @ ht = 0y * tanh (Ct)

)
J‘J itr-%t Cy = fr* Cro1 +1ip % C

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory

A

OUtpUt gate QTQ @ (EfD iv =0 (Wi [he—r, 2] + b))
P
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LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated Recurrent Unit (GRU)

't combines the forget and input gates into a single “update gate! It also
merges the cell state and hidden state, and makes some other changes.

it = 0 (Wz ' :ht—laxt:)
rt =0 (Wr ' :ht—laxt:)
h; = tanh (W - [re * hy_1, 24])

ht:(l—zt)*ht_l—FZt*Bt

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM Networks

You can build a computation graph with continuous transformations.
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Multiple Layers and Bidirectional LSTM Networks

Hierarchical with continuous transformations.

representation
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Tips & Tricks

When conditioning on full input sequence Bidirectional RNNs exploit it:
* Have one RNNs traverse the sequence left-to-right
* Have another RNN traverse the sequence right-to-left
* Use concatenation of hidden layers as feature representation
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Multiple Layers and Bidirectional LSTM Networks

Hierarchical with continuous transformations.

representation

Bidirectional
processing

T
o S,
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Tips & Tricks

When conditioning on full input sequence Bidirectional RNNs exploit it:
* Have one RNNs traverse the sequence left-to-right
* Have another RNN traverse the sequence right-to-left
* Use concatenation of hidden layers as feature representation

When initializing RNN we need to specity the initial state
* Could initialize them to a fixed value (such as 0)

° Better to treat the initial state as learned parameters
* Start off with random guesses of the initial state values

+ Backpropagate the prediction error through time all the way to the initial state values
and compute the gradient of the error with respect to these

« Update these parameters by gradient descent
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Sequential Data Problems

one to one one to many many to one many to many many to many

Fixed-sized Sequence output Sequence input (e.g. Sequence input and Synced sequence input
input (e.g. image captioning  sentiment analysis sequence output (e.g. and output (e.g. video
to fixed-sized takes an image and where a given sentence Machine Translation: an classification where we
output outputs a sentence of is classified as RNN reads a sentence in wish to label each frame
(e.g. image words). expressing positive or English and then outputs of the video)
classification) negative sentiment). a sentence in French)

LSTM Images Credits: Andrej Karpathy

OLITECNICO MILANO 1863



Sequence to Sequence Learning Examples (1/3)

Image Captioning: input a single image and get a series or sequence of
words as output which describe it. The | |mage has a fixed size, but the
output has varying length. : '

one to many

| Arson ridn a
T T T motorcycle on a dirt road.

A group of young people Two hockey players are fighting
playing a game of frisbee. over the puck.
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Sequence to Sequence Learning Examples (2/3)

Sentiment Classification/Analysis: input a sequence of characters or
words, e.g., a tweet, and classify the sequence into positive or negative
sentiment. Input has varying lengths; output is of a fixed type and size.

| really like the color of my new Iphone °
n N | didn’t really enjoy the camera of my Iphone —-’

many to one
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Sequence to Sequence Learning Examples (3/3)

Language Translation: having some text in a particular language, e.g.,
English, we wish to translate it in another, e.g., French. Each language has
it's own semantics and it has varying lengths for the same sentence.

many to many many to many

French was the official language of the colony of French Indochina,
comprising modern-day Vietnam, Laos, and Cambodia. It continues
to be an administrative language in Laos and Cambodia, although its
influence has waned in recent years.

> P P P b D B H

Le francais était la langue officielle de la colonie de I''ndochine

T T T T T T francaise, comprenant le Vietnam d'aujourd'hui, le Laos et le
Cambodge. Il continue d'étre une langue administrative au Laos et

au Cambodge, bien que son influence a décliné au cours des
derniéres années.
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