
- Recurrent Neural Networks- 

Matteo Matteucci, PhD (matteo.matteucci@polimi.it)

Artificial Intelligence and Robotics Laboratory

Politecnico di Milano

Artificial Neural Networks and Deep Learning 



2

Xt

Sequence Modeling

So far we have considered only «static» datasets
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Sequence Modeling

So far we have considered only «static» datasets
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Sequence Modeling

Different ways to deal with «dynamic» data:

Memoryless models (fixed lag):
• Autoregressive models

• Feedforward neural networks

Models with memory (unlimited):
• Linear dynamical systems

• Hidden Markov models

• Recurrent Neural Networks

• ...
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Memoryless Models for Sequences (1/2)

Autoregressive models

• Predict the next input from

previous ones using «delay taps»

Linear models with fixed lag

• Predict the next output from

previous inputs using

«delay taps»
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Memoryless Models for Sequences (2/2)

Feed forward neural networks

• Generalize autoregressive models

using non linear hidden layers

Feed forward neural networks

with delays

• Predict the next output from

previous inputs and previous

outputs using «delay taps»

X0 X1 X2 X3 Xt
… … 

Hidden

𝑊𝑡𝑊𝑡−1𝑊𝑡−2

time

time

X0 X1 X2 X3 Xt
… … 

Y0 Y1 YtY2 Y3 … … 

Hidden

𝑊𝑡−2 𝑊𝑡−1 𝑊𝑡

𝑉𝑡−2



7

Dynamical Systems (Models with Memory)

Generative models with a hidden state which cannot be observed directly 

• The hidden state has some dynamics possibly

affected by noise and produces the output

• To compute the output need to infer hidden state

• Input are treated as driving inputs

In linear dynamical systems this becomes:

• State continuous with Gaussian uncertainty

• Transformations are assumed to be linear

• State can be estimated using Kalman filtering 
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Dynamical Systems (Models with Memory)

Generative models with a hidden state which cannot be observed directly 

• The hidden state has some dynamics possibly

affected by noise and produces the output

• To compute the output need to infer hidden state

• Input are treated as driving inputs

In hidden Markov models this becomes:

• State assumed to be discrete, state transitions

are stochastic (transition matrix)

• Output is a stochastic function of hidden states

• State can be estimated via Viterbi algorithm. 
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Recurrent Neural networks

Memory via recurrent connections:

• Distributed hidden state allows 

to store information efficiently

• Non-linear dynamics allows 

complex hidden state updates

Deterministic 

systems ...

“With enough neurons and time, RNNs 

can compute anything that can be 

computed by a computer.”

(Computation Beyond the Turing Limit

Hava T. Siegelmann, 1995)
… 
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Recurrent Neural networks

Memory via recurrent connections:

• Distributed hidden state allows 

to store information efficiently

• Non-linear dynamics allows 

complex hidden state updates
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Backpropagation Through Time
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Backpropagation Through Time
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Backpropagation Through Time

• Perform network unroll for U steps

• Initialize WB, 𝑉𝐵 replicas to be the same

• Compute gradients and update replicas

with the average of their gradients
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How much should we go back in time?

Sometime output might be related to 

some input happened quite long before

However backpropagation through

time was not able to train recurrent

neural networks significantly 

back in time ...
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How much can we go back in time? 

To better understand why it was not working consider a simplified case:

Backpropagation over an entire sequence 𝑆 is computed as

If we consider the norm of these terms
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converges to 0 ... 

With Sigmoids and Tanh we 

have vanishing gradients
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Which Activation Function?

Sigmoid activation function

𝑔 𝑎 =
1

1 + exp(−𝑎)
𝑔′ 𝑎 = 𝑔(𝑎)(1 − 𝑔 𝑎 )

Tanh activation function

𝑔 𝑎 =
exp 𝑎 − exp(−𝑎)

exp(𝑎) + exp(−𝑎)

𝑔′ 𝑎 = 1 − 𝑔 𝑎 2

𝑔′ 0 = 1 − 𝑔 0 2 = 1 −
exp 0 −exp 0

exp 0 + exp 0

2
=1𝑔′ 0 = 𝑔 0 1 − 𝑔 0 =

1

1 + exp(0)
⋅

exp 0

1 + exp 0
= 0.25
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Dealing with Vanishing Gradient

Force all gradients to be either 0 or 1

Build Recurrent Neural Networks using small modules that are designed 

to remember values for a long time. 

𝑔 𝑎 = 𝑅𝑒𝐿𝑢 𝑎 = max 0, 𝑎

𝑔′ 𝑎 = 1𝑎>0

It only accumulates 

the input ...

𝑥
𝑦𝑡 = 𝑔(𝑤 2 ⋅ ℎ𝑡)ℎ𝑡 = 𝑣(1)ℎ𝑡−1 + 𝑤(1)𝑥

𝑣(1) = 1
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Long Short-Term Memories (LSTM)

Hochreiter & Schmidhuber (1997) solved the problem of vanishing 

gradient designing a memory cell using logistic and linear units with 

multiplicative interactions:

• Information gets into the cell 

whenever its “write” gate is on.

• The information stays in the cell

so long as its “keep” gate is on.

• Information is read from the cell

by turning on its “read” gate.

Can backpropagate 

through this since the 

loop has fixed weight.
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RNN vs. LSTM

RNN

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory

LSTM

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory

Input gate

LSTM

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory

Forget gate

LSTM

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory

Memory gate

LSTM

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory

Output gate

LSTM

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Gated Recurrent Unit (GRU)

It combines the forget and input gates into a single “update gate.” It also 

merges the cell state and hidden state, and makes some other changes. 

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM Networks

You can build a computation graph with continuous transformations.
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Multiple Layers and Bidirectional LSTM Networks

A computation graph in time with continuous transformations.
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Tips & Tricks

When conditioning on full input sequence Bidirectional RNNs exploit it:

• Have one RNNs traverse the sequence left-to-right

• Have another RNN traverse the sequence right-to-left

• Use concatenation of hidden layers as feature representation



29

Multiple Layers and Bidirectional LSTM Networks

A computation graph in time with continuous transformations.
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Tips & Tricks

When conditioning on full input sequence Bidirectional RNNs exploit it:

• Have one RNNs traverse the sequence left-to-right

• Have another RNN traverse the sequence right-to-left

• Use concatenation of hidden layers as feature representation

When initializing RNN we need to specify the initial state

• Could initialize them to a fixed value (such as 0)

• Better to treat the initial state as learned parameters

• Start off with random guesses of the initial state values

• Backpropagate the prediction error through time all the way to the initial state values 

and compute the gradient of the error with respect to these

• Update these parameters by gradient descent
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Sequential Data Problems

Fixed-sized 

input

to fixed-sized

output

(e.g. image

classification)

Sequence output 

(e.g. image captioning 

takes an image and 

outputs a sentence of 

words).

Sequence input (e.g. 

sentiment analysis 

where a given sentence 

is classified as 

expressing positive or 

negative sentiment).

Sequence input and 
sequence output (e.g. 
Machine Translation: an 
RNN reads a sentence in 
English and then outputs 
a sentence in French)

Synced sequence input 
and output (e.g. video 
classification where we 
wish to label each frame 
of the video)

LSTM Images Credits: Andrej Karpathy
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Sequence to Sequence Learning Examples (1/3)

Image Captioning: input a single image and get a series or sequence of 

words as output which describe it. The image has a fixed size, but the 

output has varying length.
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Sequence to Sequence Learning Examples (2/3)

Sentiment Classification/Analysis: input a sequence of characters or 

words, e.g., a tweet, and classify the sequence into positive  or negative 

sentiment. Input has varying lengths; output is of a fixed type and size.
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Sequence to Sequence Learning Examples (3/3)

Language Translation: having some text in a particular language, e.g., 

English, we wish to translate it in another, e.g., French. Each language has 

it’s own semantics and it has varying lengths for the same sentence. 
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