
- Recurrent Neural Networks-

Matteo Matteucci, PhD (matteo.matteucci@polimi.it)

Artificial Intelligence and Robotics Laboratory

Politecnico di Milano

Artificial Neural Networks and Deep Learning

2

Xt

Sequence Modeling

So far we have considered only «static» datasets

x1

xI

xi

…

…

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … …

…

1 1

𝑔𝐾 𝑥 w

1

3

Sequence Modeling

So far we have considered only «static» datasets

X0

x1

xI

xi

…

…

X1

x1

xI

xi

…

…

X2

x1

xI

xi

…

…

X3

x1

xI

xi

…

…

Xt

x1

xI

xi

…

…

…

time

…

4

Sequence Modeling

Different ways to deal with «dynamic» data:

Memoryless models (fixed lag):
• Autoregressive models

• Feedforward neural networks

Models with memory (unlimited):
• Linear dynamical systems

• Hidden Markov models

• Recurrent Neural Networks

• ...

X0

x1

xI

xi

…

…

X1

x1

xI

xi

…

…

X2

x1

xI

xi

…

…

X3

x1

xI

xi

…

…

Xt

x1

xI

xi

…

…

…

time

…

X0 X1 X2 X3 Xt
… …

5

Memoryless Models for Sequences (1/2)

Autoregressive models

• Predict the next input from

previous ones using «delay taps»

Linear models with fixed lag

• Predict the next output from

previous inputs using

«delay taps»

X0 X1 X2 X3 Xt
… …

𝑊𝑡−1

𝑊𝑡−2

time

time

X0 X1 X2 X3 Xt
… …

𝑊𝑡−1𝑊𝑡−2

Y0 Y1 YtY2 Y3 … …

6

Memoryless Models for Sequences (2/2)

Feed forward neural networks

• Generalize autoregressive models

using non linear hidden layers

Feed forward neural networks

with delays

• Predict the next output from

previous inputs and previous

outputs using «delay taps»

X0 X1 X2 X3 Xt
… …

Hidden

𝑊𝑡𝑊𝑡−1𝑊𝑡−2

time

time

X0 X1 X2 X3 Xt
… …

Y0 Y1 YtY2 Y3 … …

Hidden

𝑊𝑡−2 𝑊𝑡−1 𝑊𝑡

𝑉𝑡−2

7

Dynamical Systems (Models with Memory)

Generative models with a hidden state which cannot be observed directly

• The hidden state has some dynamics possibly

affected by noise and produces the output

• To compute the output need to infer hidden state

• Input are treated as driving inputs

In linear dynamical systems this becomes:

• State continuous with Gaussian uncertainty

• Transformations are assumed to be linear

• State can be estimated using Kalman filtering

X0 X1 Xt…

H
id

d
en

H
id

d
en

H
id

d
en

…

Y0 Y1 Yt…

time

Stochastic systems ...

8

Dynamical Systems (Models with Memory)

Generative models with a hidden state which cannot be observed directly

• The hidden state has some dynamics possibly

affected by noise and produces the output

• To compute the output need to infer hidden state

• Input are treated as driving inputs

In hidden Markov models this becomes:

• State assumed to be discrete, state transitions

are stochastic (transition matrix)

• Output is a stochastic function of hidden states

• State can be estimated via Viterbi algorithm.

H
id

d
en

H
id

d
en

H
id

d
en

…

Y0 Y1 Yt…

time

Stochastic systems ...

9

Recurrent Neural networks

Memory via recurrent connections:

• Distributed hidden state allows

to store information efficiently

• Non-linear dynamics allows

complex hidden state updates

Deterministic

systems ...

“With enough neurons and time, RNNs

can compute anything that can be

computed by a computer.”

(Computation Beyond the Turing Limit

Hava T. Siegelmann, 1995)
…

𝑐𝐵
𝑡−1

𝑐1
𝑡−1

𝑐𝑏
𝑡 𝑥𝑡,W𝐵

1
, 𝑐𝑡−1, VB

(1)

x1

xI

xi

…

…
𝑔𝑡 𝑥 w

𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

…

ℎ𝑗
𝑡 𝑥𝑡,W 1 , 𝑐𝑡−1, V 1

1

1

10

Recurrent Neural networks

Memory via recurrent connections:

• Distributed hidden state allows

to store information efficiently

• Non-linear dynamics allows

complex hidden state updates

…

𝑐𝐵
𝑡−1

𝑐1
𝑡−1

x1

xI

xi

…

…
𝑔𝑡 𝑥 w

𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

…

1

1

𝑔𝑡 𝑥𝑛|𝑤 = 𝑔 ෍

𝑗=0

𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗
𝑡 ⋅ +෍

𝑏=0

𝐵

𝑣1𝑏
(2)

⋅ 𝑐𝑏
𝑡 ⋅

ℎ𝑗
𝑡 ⋅ = ℎ𝑗 ෍

𝑗=0

𝐽

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛
𝑡 +෍

𝑏=0

𝐵

𝑣𝑗𝑏
(1)

⋅ 𝑐𝑏
𝑡−1

𝑐𝑏
𝑡 ⋅ = 𝑐𝑏 ෍

𝑗=0

𝐽

𝑤𝑏𝑖
(1)

⋅ 𝑥𝑖,𝑛
𝑡 + ෍

𝑏′=0

𝐵

𝑣𝑏𝑏′
(1)

⋅ 𝑐𝑏′
𝑡−1

𝑐𝑏
𝑡 𝑥𝑡,W𝐵

1
, 𝑐𝑡−1, VB

(1)

ℎ𝑗
𝑡 𝑥𝑡,W 1 , 𝑐𝑡−1, V 1

11

Backpropagation Through Time

…

𝑐𝐵
𝑡−1

𝑐1
𝑡−1

x1

xI

xi

…

…
𝑔𝑡 𝑥 w

𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

…

1

1

𝑐𝑏
𝑡 𝑥𝑡,W𝐵

1
, 𝑐𝑡−1, VB

(1)

ℎ𝑗
𝑡 𝑥𝑡,W 1 , 𝑐𝑡−1, V 1

12

Backpropagation Through Time

x1

xI

xi

…

…
𝑔𝑡 𝑥 w

𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

…

1

1

… …

x1

xI

xi

…

1

…

…

x1

xI

xi

…

1

…

…

x1

xI

xi

…

1

…

…

All these weights

should be the same.

𝑐𝑏
𝑡 𝑥𝑡,W𝐵

1
, 𝑐𝑡−1, VB

(1)

ℎ𝑗
𝑡 𝑥𝑡,W 1 , 𝑐𝑡−1, V 1

13

Backpropagation Through Time

• Perform network unroll for U steps

• Initialize WB, 𝑉𝐵 replicas to be the same

• Compute gradients and update replicas

with the average of their gradients

x1

xI

xi

…

…

𝑔𝑡 𝑥 w

𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

…

1

1

… … … … …

𝑉𝐵
𝑡𝑉𝐵

𝑡−1𝑉𝐵
𝑡−2𝑉𝐵

𝑡−3

𝑊𝐵 = 𝑊𝐵 − 𝜂 ⋅
1

𝑈
෍

𝑢=0

𝑈−1
𝜕𝐸

𝜕𝑊𝐵
𝑡−𝑢 𝑉𝐵 = 𝑉𝐵 − 𝜂 ⋅

1

𝑈
෍

𝑢=0

𝑈−1
𝜕𝐸𝑡

𝜕𝑉𝐵
𝑡−𝑢

𝑐𝑏
𝑡 𝑥𝑡,W𝐵

1
, 𝑐𝑡−1, VB

(1)

ℎ𝑗
𝑡 𝑥𝑡,W 1 , 𝑐𝑡−1, V 1

14

How much should we go back in time?

Sometime output might be related to

some input happened quite long before

However backpropagation through

time was not able to train recurrent

neural networks significantly

back in time ...

…

𝑐𝐵
𝑡−1

𝑐1
𝑡−1

x1

xI

xi

…

…
𝑔𝑡 𝑥 w

𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

…

1

1

Jane walked into the room. John walked in too.
It was late in the day. Jane said hi to <???>

Was due to not being able to

backprop through many layers ...

𝑐𝑏
𝑡 𝑥𝑡,W𝐵

1
, 𝑐𝑡−1, VB

(1)

ℎ𝑗
𝑡 𝑥𝑡,W 1 , 𝑐𝑡−1, V 1

15

How much can we go back in time?

To better understand why it was not working consider a simplified case:

Backpropagation over an entire sequence 𝑆 is computed as

If we consider the norm of these terms

𝑥
𝑦𝑡 = 𝑔(𝑤 2 ⋅ ℎ𝑡)ℎ𝑡 = ℎ(𝑣 1 ⋅ ℎ𝑡−1 + 𝑤 1 ⋅ 𝑥)

𝜕𝐸

𝜕𝑤
=෍

𝑡=1

𝑆
𝜕𝐸𝑡

𝜕𝑤

𝜕𝐸𝑡

𝜕𝑤
=෍

𝑡=1

𝑡
𝜕𝐸𝑡

𝜕𝑦𝑡
𝜕𝑦𝑡

𝜕ℎ𝑡
𝜕ℎ𝑡

𝜕ℎ𝑘
𝜕ℎ𝑘

𝜕𝑤

𝜕ℎ𝑡

𝜕ℎ𝑘
= ෑ

𝑖=𝑘+1

𝑡
𝜕ℎ𝑖
𝜕ℎ𝑖−1

= ෑ

𝑖=𝑘+1

𝑡

𝑣 1 ℎ′ 𝑣 1 ⋅ ℎ𝑖−1 + 𝑤(1) ⋅ 𝑥

𝜕ℎ𝑖
𝜕ℎ𝑖−1

≤ 𝑣 1 ℎ′ ⋅
𝜕ℎ𝑡

𝜕ℎ𝑘
≤ 𝛾𝑣 ⋅ 𝛾ℎ′

𝑡−𝑘

If 𝛾𝑣 ⋅ 𝛾ℎ′ < 1this

converges to 0 ...

With Sigmoids and Tanh we

have vanishing gradients

16

Which Activation Function?

Sigmoid activation function

𝑔 𝑎 =
1

1 + exp(−𝑎)
𝑔′ 𝑎 = 𝑔(𝑎)(1 − 𝑔 𝑎)

Tanh activation function

𝑔 𝑎 =
exp 𝑎 − exp(−𝑎)

exp(𝑎) + exp(−𝑎)

𝑔′ 𝑎 = 1 − 𝑔 𝑎 2

𝑔′ 0 = 1 − 𝑔 0 2 = 1 −
exp 0 −exp 0

exp 0 + exp 0

2
=1𝑔′ 0 = 𝑔 0 1 − 𝑔 0 =

1

1 + exp(0)
⋅

exp 0

1 + exp 0
= 0.25

17

Dealing with Vanishing Gradient

Force all gradients to be either 0 or 1

Build Recurrent Neural Networks using small modules that are designed

to remember values for a long time.

𝑔 𝑎 = 𝑅𝑒𝐿𝑢 𝑎 = max 0, 𝑎

𝑔′ 𝑎 = 1𝑎>0

It only accumulates

the input ...

𝑥
𝑦𝑡 = 𝑔(𝑤 2 ⋅ ℎ𝑡)ℎ𝑡 = 𝑣(1)ℎ𝑡−1 + 𝑤(1)𝑥

𝑣(1) = 1

18

Long Short-Term Memories (LSTM)

Hochreiter & Schmidhuber (1997) solved the problem of vanishing

gradient designing a memory cell using logistic and linear units with

multiplicative interactions:

• Information gets into the cell

whenever its “write” gate is on.

• The information stays in the cell

so long as its “keep” gate is on.

• Information is read from the cell

by turning on its “read” gate.

Can backpropagate

through this since the

loop has fixed weight.

19

RNN vs. LSTM

RNN

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

20

Long Short-Term Memory

LSTM

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

21

Long Short-Term Memory

Input gate

LSTM

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

22

Long Short-Term Memory

Forget gate

LSTM

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

23

Long Short-Term Memory

Memory gate

LSTM

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

24

Long Short-Term Memory

Output gate

LSTM

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

25

Gated Recurrent Unit (GRU)

It combines the forget and input gates into a single “update gate.” It also

merges the cell state and hidden state, and makes some other changes.

LSTM Images from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

26

LSTM Networks

You can build a computation graph with continuous transformations.

X0 X1 Xt…

H
id

d
en

H
id

d
en

H
id

d
en…

Y0 Y1 Yt…

27

Multiple Layers and Bidirectional LSTM Networks

A computation graph in time with continuous transformations.

X0

LS
TM

Y0

LS
TM

R
eL

u

X1

LS
TM

Y1

LS
TM

R
eL

u

…

…

…

…

…

Xt

LS
TM

Yt

LS
TM

R
eL

u

Hierarchical

representation

28

Tips & Tricks

When conditioning on full input sequence Bidirectional RNNs exploit it:

• Have one RNNs traverse the sequence left-to-right

• Have another RNN traverse the sequence right-to-left

• Use concatenation of hidden layers as feature representation

29

Multiple Layers and Bidirectional LSTM Networks

A computation graph in time with continuous transformations.

X0

LS
TM

Y0

LS
TM

R
eL

u

X1

LS
TM

Y1

LS
TM

R
eL

u

…

…

…

…

…

Xt

LS
TM

Yt

LS
TM

R
eL

u

X0
Xt

LS
TM

Yt

LS
TM

R
eL

u

…

…

…

…

…

Xt-1
X1

LS
TM

Y1

LS
TM

R
eL

u

Xt
X0

LS
TM

Y0

LS
TM

R
eL

u

Hierarchical

representation

Bidirectional

processing

30

Tips & Tricks

When conditioning on full input sequence Bidirectional RNNs exploit it:

• Have one RNNs traverse the sequence left-to-right

• Have another RNN traverse the sequence right-to-left

• Use concatenation of hidden layers as feature representation

When initializing RNN we need to specify the initial state

• Could initialize them to a fixed value (such as 0)

• Better to treat the initial state as learned parameters

• Start off with random guesses of the initial state values

• Backpropagate the prediction error through time all the way to the initial state values

and compute the gradient of the error with respect to these

• Update these parameters by gradient descent

31

Sequential Data Problems

Fixed-sized

input

to fixed-sized

output

(e.g. image

classification)

Sequence output

(e.g. image captioning

takes an image and

outputs a sentence of

words).

Sequence input (e.g.

sentiment analysis

where a given sentence

is classified as

expressing positive or

negative sentiment).

Sequence input and
sequence output (e.g.
Machine Translation: an
RNN reads a sentence in
English and then outputs
a sentence in French)

Synced sequence input
and output (e.g. video
classification where we
wish to label each frame
of the video)

LSTM Images Credits: Andrej Karpathy

32

Sequence to Sequence Learning Examples (1/3)

Image Captioning: input a single image and get a series or sequence of

words as output which describe it. The image has a fixed size, but the

output has varying length.

33

Sequence to Sequence Learning Examples (2/3)

Sentiment Classification/Analysis: input a sequence of characters or

words, e.g., a tweet, and classify the sequence into positive or negative

sentiment. Input has varying lengths; output is of a fixed type and size.

34

Sequence to Sequence Learning Examples (3/3)

Language Translation: having some text in a particular language, e.g.,

English, we wish to translate it in another, e.g., French. Each language has

it’s own semantics and it has varying lengths for the same sentence.

	Slide 1: - Recurrent Neural Networks- Matteo Matteucci, PhD (matteo.matteucci@polimi.it) Artificial Intelligence and Robotics Laboratory Politecnico di Milano
	Slide 2: Sequence Modeling
	Slide 3: Sequence Modeling
	Slide 4: Sequence Modeling
	Slide 5: Memoryless Models for Sequences (1/2)
	Slide 6: Memoryless Models for Sequences (2/2)
	Slide 7: Dynamical Systems (Models with Memory)
	Slide 8: Dynamical Systems (Models with Memory)
	Slide 9: Recurrent Neural networks
	Slide 10: Recurrent Neural networks
	Slide 11: Backpropagation Through Time
	Slide 12: Backpropagation Through Time
	Slide 13: Backpropagation Through Time
	Slide 14: How much should we go back in time?
	Slide 15: How much can we go back in time?
	Slide 16: Which Activation Function?
	Slide 17: Dealing with Vanishing Gradient
	Slide 18: Long Short-Term Memories (LSTM)
	Slide 19: RNN vs. LSTM
	Slide 20: Long Short-Term Memory
	Slide 21: Long Short-Term Memory
	Slide 22: Long Short-Term Memory
	Slide 23: Long Short-Term Memory
	Slide 24: Long Short-Term Memory
	Slide 25: Gated Recurrent Unit (GRU)
	Slide 26: LSTM Networks
	Slide 27: Multiple Layers and Bidirectional LSTM Networks
	Slide 28: Tips & Tricks
	Slide 29: Multiple Layers and Bidirectional LSTM Networks
	Slide 30: Tips & Tricks
	Slide 31: Sequential Data Problems
	Slide 32: Sequence to Sequence Learning Examples (1/3)
	Slide 33: Sequence to Sequence Learning Examples (2/3)
	Slide 34: Sequence to Sequence Learning Examples (3/3)

