Estimation of Distribution Algorithms EVO Lecture 13

Simon Poulding

December 2010

Motivation

Estimation of Distribution Algorithms (EDAs) Probabilistic Model-Building Genetic Algorithms (PMBGAs) Iterated Density-Estimation Evolutionary Algorithms (IDEAs)

- modern form of evolutionary algorithm
- solve problem classes where standard GAs fail
- trajectories

Road Map

Quick Review of Probability I

Probability

- 7 random observations of my state of mind
- if X is a random variable representing my state of mind, can estimate its distribution as:

$$
\begin{aligned}
& \mathbb{P}(X=\text { happy })=\frac{4}{7} \\
& \mathbb{P}(X=\text { sad })=\frac{3}{7}
\end{aligned}
$$

State sad sad happy happy sad happy happy

Quick Review of Probability II

Conditional Probability

- if D is the day,

$$
\begin{aligned}
& \mathbb{P}(X=\text { happy } \mid D=\text { Monday })=\frac{1}{3} \\
& \mathbb{P}(X=\text { sad } \mid D=\text { Monday })=\frac{2}{3}
\end{aligned}
$$

- enables a more 'refined' model
- conditional probability can be calculated using:

Day	State
Monday	sad
Monday	sad
Monday	happy
Friday	happy
Friday	sad
Friday	happy
Friday	happy

$$
\mathbb{P}(X=x \mid D=d)=\frac{\mathbb{P}(X=x, D=d)}{\mathbb{P}(D=d)}
$$

Genetic Algorithm Process

Estimation of Distribution Algorithm Process

A Simple Example - Configuration

Genome (Representation)

B	A	A	B

4 genes $\left(X_{i}, i=0,1,2,3\right)$; each gene is either A or B

Probability Model

(0) (1) (2) 3

assume each gene is independent

Probability Distribution

$$
\left(p_{0}, p_{1}, p_{2}, p_{3}\right)
$$

where $\mathbb{P}\left(X_{i}=\mathrm{A}\right)=p_{i}$ and thus $\mathbb{P}\left(X_{i}=\mathrm{B}\right)=1-p_{i}$

A Simple Example - Process

A Simple Example - Key Points I

Initialisation

Initially, don't know distributions of A and B in best solutions, so assume equally likely: $p_{i}=0.5$.

Generation

Could use the following method to pick the value of each gene, X_{i} :
(1) pick a (uniformly distributed) random number, γ, between 0 and 1
(2) if $\gamma \leq p_{i}$, then set X_{i} to A , otherwise to B

Note: The values in the generated population will match the distribution closely, but not necessarily exactly.

A Simple Example - Key Points II

Selection

Can use same selection methods as for standard GAs, e.g. proportional selection (roulette wheel).

Estimation

In this example, simply count the number of As for gene X_{i} and divide by the number of individuals to give p_{i}.

Termination

Sensible criterion is for all p_{i} to be either 0 or 1 . Note: The solution is ABAA; it is not $(1,0,1,1)$. The latter is the probability distribution at termination.

EDAs as GAs with Variance Operator

EDAs as GAs with Variance Operator

Univariate Probability Models

(0) (1) 2

This model is used by the following EDAs (although the algorithm itself differs slightly):

- Univariate Marginal Distribution Algorithm (UMDA)
[Mühlenbein and Paaß, 1996]
- Population-Based Incremental Learning (PBIL) [Baluja, 1994]
- Compact Genetic Algorithm (cGA) [Harik et al., 1999]

But

Is the assumption of independent probability distributions for each gene an oversimplification?

Road Map

Conditional Probability Models

Probability distribution for a gene depends on (conditional on) the value of other genes.

Example

- distribution of X_{1} is independent (as before)
- but, distribution of X_{3} depends on value of X_{1}
- distribution of X_{2} depends on value of X_{3}
- distribution of X_{0} depends on values of X_{1} and X_{2}
(arrows go from parent(s) to dependent child)
Need to order genes appropriately in order to generate from, and estimate, the distribution.

Conditional Probability Model Calculations I

Estimation Example

$$
\begin{array}{ll}
\mathbb{P}\left(X_{1}=\mathrm{A}\right)=0.5 & \text { and so } \mathbb{P}\left(X_{1}=\mathrm{B}\right)=0.5 \\
\mathbb{P}\left(X_{0}=\mathrm{A} \mid X_{1}=\mathrm{A}\right)=0.5 & \text { and so } \mathbb{P}\left(X_{0}=\mathrm{B} \mid X_{1}=\mathrm{A}\right)=0.5 \\
\mathbb{P}\left(X_{0}=\mathrm{A} \mid X_{1}=\mathrm{B}\right)=1 & \text { and so } \mathbb{P}\left(X_{0}=\mathrm{B} \mid X_{1}=\mathrm{B}\right)=0
\end{array}
$$

Conditional Probability Model Calculations II

Generation Example

- $\mathbb{P}\left(X_{1}=\mathrm{A}\right)=0.5$
- $\mathbb{P}\left(X_{0}=\mathrm{A} \mid X_{1}=\mathrm{A}\right)=0.5$
- $\mathbb{P}\left(X_{0}=\mathrm{A} \mid X_{1}=\mathrm{B}\right)=1$

(1) randomly pick γ_{1} between 0 and 1 , say $\gamma_{1}=0.428 \ldots$
(2) since $\gamma_{1} \leq \mathbb{P}\left(X_{1}=\mathrm{A}\right)$, set X_{1} to A
(3) now pick γ_{0} between 0 and 1 , say $\gamma_{0}=0.732 \ldots$
(9) since $\gamma_{0}>\mathbb{P}\left(X_{0}=\mathrm{A} \mid X_{1}=\mathrm{A}\right)$, set X_{0} to B
(6) so in our generated individual, $X_{0}=\mathrm{B}, X_{1}=\mathrm{A}$

Subset Probability Models

Probability distributions considered for a subset of genes taken as a whole.

Example

for each subset, need to store probability of all combinations, e.g.:

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}=\mathrm{A}, X_{3}=\mathrm{A}\right) \\
& \mathbb{P}\left(X_{1}=\mathrm{A}, X_{3}=\mathrm{B}\right) \\
& \mathbb{P}\left(X_{1}=\mathrm{B}, X_{3}=\mathrm{A}\right) \\
& \mathbb{P}\left(X_{1}=\mathrm{B}, X_{3}=\mathrm{B}\right)
\end{aligned}
$$

Why Use More Complex Models?

- Better able to model structure of underlying problem in terms of the relationship between genes
- Processing for estimating and generating from a more complex model is not usually significant compared to fitness evaluation
- Factorised Distribution Algorithm (FDA) [Mühlenbein, Mahning, and Rodriguez, 1998] uses a predefined model using conditional probability and subsets

But

Is is realistic that we define structure of probability model for problems in general?

Linkage (Model) Learning

- So far, examples have used a predefined probability model that stays the same throughout the algorithm
- Many powerful EDAs 'learn' the probability model at they go
- Often the probability model is
 derived during the estimation step of each generation

Model Metrics

- To be able to choose from all possible models, need to have a measure of how good a particular model is at representing the selected population
- Examples of metrics include:
- Bayesian Dirichlet metric
- Kullback-Leibler divergence
- Pearson's chi-square statistic
- minimum description length

Deriving the Model

Given a metric, a possible method of deriving the model from the selected population is the following greedy algorithm:

(1) assume no connections (all genes independent)

Deriving the Model

Given a metric, a possible method of deriving the model from the selected population is the following greedy algorithm:

(1) assume no connections (all genes independent)
(2) consider all valid operations on the model (e.g. adding a link from a parent to a child)

Deriving the Model

Given a metric, a possible method of deriving the model from the selected population is the following greedy algorithm:

(1) assume no connections (all genes independent)
(2) consider all valid operations on the model (e.g. adding a link from a parent to a child)
(3) if no operation improves the metric, stop
(1) otherwise perform the operation that improves the metric the most

Deriving the Model

Given a metric, a possible method of deriving the model from the selected population is the following greedy algorithm:

(1) assume no connections (all genes independent)
(2) consider all valid operations on the model (e.g. adding a link from a parent to a child)
(3) if no operation improves the metric, stop
(1) otherwise perform the operation that improves the metric the most
(3) repeat from step (2)

Examples of Linkage Learning EDAs I

Mutual Information Maximizing Input Clustering (MIMIC)

De Bonet et al., 1997

Bivariate Marginal Distribution Algorithm (BMDA)

Pelikan and Mühlenbein, 1999

Examples of Linkage Learning EDAs II

Extended Compact Genetic Algorithm (ECGA)

Harik, 1999

Bayesian Optimization Algorithm (BOA)

Pelikan, Goldberg and Cantú-Paz, 2000

Road Map

Building Blocks

- a schema is bit pattern template using the alphabet $\{0,1, *\}$ where * is a wildcard
- defining length is distance between first and last non-wildcard symbols
- order is number of non-wildcard symbols

Example

schema: $H=* 10 *$
representatives: 0100, 0101, 1100, 1101
defining length: $\delta(H)=1 \quad$ order: $o(H)=2$

- building blocks are short, low order, highly fit schemata
- GAs work well when building blocks propogate through the population and are combined to produce fit individuals

Disruptive Crossover

Some crossover operators can disrupt building blocks.
Example - One-Point Crossover

0	1	0	0
1	0	1	1

Disruptive Crossover

Some crossover operators can disrupt building blocks.
Example - One-Point Crossover

Disruptive Crossover

Some crossover operators can disrupt building blocks.
Example - One-Point Crossover

Disruptive Crossover

Some crossover operators can disrupt building blocks.
Example - One-Point Crossover

Case Study - Additive Deceptive Function

Genome

0	1	1	0	1	0

Fitness

$$
f=g\left(X_{0}, X_{1}, X_{2}\right)+g\left(X_{3}, X_{4}, X_{5}\right)
$$

where $g(\cdot)$ is:

global optimum is clearly 111111, but deceptive nature of $g(\cdot)$ tends to move population towards local optimum at 000000

Results Using Standard GA

- population size 1000
- one-point crossover (with probability 1)
- no mutation
- fitness proportional selection

Figure: proportion of population having schemata $111^{* * *}$ and $000^{* * *}$ at each generation; average over 10 runs

Hypothesis

- schemata with 2 ones are quickly eliminated from population
- crossover between 111 and other schemata is more often destructive than not
- crossover between schemata is unlikely to produce 111
- therefore, schemata with few ones begin to dominate
- since 000 is the fitter of the few ones schemata, algorithm eventually converges to this solution

Results Using EDA

- population size 1000
- fitness proportional selection
- predefined model

Figure: proportion of population having schemata $111^{* * *}$ and $000^{* * *}$ at each generation; average over 10 runs

Hypothesis I

1	0	0	0.8	0	0	0	0.9
1	1	0	0.0	0	1	0	0.8
1	0	1	0.0	0	0	1	0.8
1	1	1	1.0	0	1	1	0.0
average			0.45	average			0.625

- in initial random population, individuals where $X_{0}=0$ are on average fitter than $X_{0}=1$
- so schemata with $X_{0}=0$ occur more frequently in each new generation

Hypothesis II

- by selection over a number of generations, algorithm then establishes probability distribution for model:
- given $X_{0}=0$, fitter individuals occur when $X_{1}=0$ and $X_{2}=0$
- given $X_{0}=1$, fitter individuals occur when $X_{1}=1$ and $X_{2}=1$
- so probability distribution now results in generation of schemata 000 and 111 more often than others
- when this occurs, individuals where $X_{0}=0$ are now on average less fit than $X_{0}=1$
- so 111 schema begins to dominate, and algorithm converges on this solution

Road Map

Billion-Variable EDA

Towards Billion Bit Optimization via Efficient Genetic Algorithms Kumara Sastry, David E Goldberg, Xavier Llorà

IlliGAL Report No. 2007007
Illinois Genetic Algorithms Laboratory
University of Illinois at Urbana-Champaign

Best EDA paper award at Genetic and Evolutionary Computation Conference (GECCO) 2007

Problem - Noisy, OneMax

Representation
10^{9} variables $x_{i} \in\{0,1\}$
Objective
Optimal solution has all $x_{i}=1$ ('OneMax')
Fitness
$f=\sum x_{i}+\mathcal{N}\left(0, \sigma^{2}\right)$

Solution Method

Algorithm

Compact Genetic Algorithm (CGA) - a univariate EDA

Implementation

Results

Extrapolation from Trajectory

For 10^{9} variables, algorithm would take too long to converge even on large parallel computing cluster.

Measured time for algorithm to reach point where all probabilities were >0.501 (from initial probability of 0.5). Extrapolated results from small problems where full convergence was possible.

Novelty

- Real-world problem size
- Very efficient parallel implementation of CGA
- Although simple EDA, superior (more scalable) to other approaches such as hill-climbing on this problem

Summary

- EDAs are a modern form of evolutionary algorithm
- Wide variety of algorithms ranging from simple (e.g. CGA) to advanced, state-of-the-art (e.g. BOA)
- Demonstrate advantages over standard GAs on some problem classes

Selected Resources

Survey of Bit-String EDAs
Martin Pelikan, David Goldberg and Fernando Lobo A Survey of Optimization by Building and Using Probabilistic Models
IlliGAL Report No. 99018, University of Illinois, 1999

Missouri Estimation of Distribution Algorithms Laboratory

http://medal.cs.umsl.edu/

