
Cognitive Robotics – PDDL
Matteo Matteucci – matteo.matteucci@polimi.it

Matteo Matteucci – matteo.matteucci@polimi.it

Planning Problems in Artificial Intelligence

Planning Problem := <P,A,S,G>

• P:= a SET of Predicates

• A:= a SET of Operators (Actions)

• S:= initial State

• G:= Goal(s)

A Plan Domain or Domain Theory is defined as := P + A

A Problem Solution or Plan is := a sequence of Actions that

• if executed frm the initial state S

• will result in a state satisfying the Goal

2

Matteo Matteucci – matteo.matteucci@polimi.it

STRIPS as a Language

STRIPS was a planner developed at SRI in 1971, now it has been used as

formal language for Planning Problems

• list of Predicates: atomic formulae

• list of Actions:

• NAME: string

• PRECONDITIONS: PartiallySpecifiedState

• EFFECTS: ADDlist, DELETElist

• + ”STRIPS assumption”

• Initial State: State

• Goal: PartiallySpecifiedState

According to the previous

• Atomic formula (atom):= predicate + arguments

• State:= set of positive atoms + CWA!

• PartiallySpecifiedState:= set of positive atoms

3

“A State S satisfies a

PartiallySpecifiedState G if S

contains all the atoms of G”

Matteo Matteucci – matteo.matteucci@polimi.it

The Block World in STRIPS

List of Predicates

• empty: the gripper is not holding a block

• holding(B): the gripper is holding block B

• on(B1,B2): block B1 is on top of block B2

• ontable(B): block B is on the table

• clear(B): block B has no blocks on top of it

and is not being held by the gripper

List of actions

4

Action Preconditions Add List Delete List

unstack(B1, B2) empty & clear(B1) &

on(B1, B2)

holding(B1),

clear(B2)

empty, on(B1, B2),

clear(B1)

pickup(B) empty & clear(B) &

ontable(B)

holding(B) empty, ontable(B),

clear(B)

stack(B1, B2) holding(B1) &

clear(B2)

empty, on(B1, B2),

clear(B1)

clear(B2),

holding(B1)

putdown(B) holding(B) empty, ontable(B),

clear(B)

holding(B)

Matteo Matteucci – matteo.matteucci@polimi.it

PDDL: Planning Domain Definition Language

PDDL (Planning Domain Definition Language) is a standard encoding

language for “classical” planning tasks

• Objects: Things in the world that interest us

• Predicates: Properties of objects that we are interested in (true/false).

• Initial state: The state of the world that we start in.

• Goal specification: Things that we want to be true.

• Actions/Operators: Ways of changing the state of the world.

Planning tasks specified in PDDL are separated into two files

• A domain file for predicates and actions

• A problem file for objects, initial state and goal specification

PDDL was invented in 1998 for the first IPC and nowadays most common

planners read PDDL files …

5

Matteo Matteucci – matteo.matteucci@polimi.it

PDDL: Domain files

(define (domain <DOMAIN_NAME>)

 (:requirements :strips)

 (:predicates (<PREDICATE_1_NAME> ?<arg1> ?<arg2> ...)

 (<PREDICATE_2_NAME> ...)

 ...)

 (:action <ACTION_1_NAME>

 :parameters (?<par1> ?<par2> ...)

 :precondition <COND_FORMULA: PartiallySpecifiedState>

 :effect <EFFECT_FORMULA: ADDlist + DELETElist>

)

 (:action <ACTION_2_NAME>

 ...)

 ...)

6

Matteo Matteucci – matteo.matteucci@polimi.it

PDDL: Problem Files

(define (problem <PROBLEM_NAME>)

 (:domain <DOMAIN_NAME>)

 (:objects <obj1> <obj2> ...)

 (:init <ATOM1> <ATOM2> ...)

 (:goal <COND_FORMULA: PartiallySpecifiedState>)

)

Where we have:

• Init and Goal are ground! (not parameterised, i.e., not ?x kind of things)

• COND_FORMULA: conjunction of atoms

 (AND atom1 ... atomn)

• EFFECT_FORMULA: conjunction of ADDED & DELETED (NOT) atoms

 (AND atom1 ... (NOT atomn))

7

Matteo Matteucci – matteo.matteucci@polimi.it

PDDL 1.2 (IPC 2000)

In successive revisions of the language requirements where added:

• :strips

• :typing in :predicates, :parameters and :objects

• :equality =

• :negativepreconditions not

• :disjunctivepreconditions or

• :existentialpreconditions exists

• :universalpreconditions forall

• :quantifiedpreconditions = :existentialpreconditions +

 :universalpreconditions

• :conditionaleffects when

• :adl = all the above (Action Description Language)

8

Matteo Matteucci – matteo.matteucci@polimi.it

PDDL: Typing in Domain and Problem Files

(define (domain <DOMAIN_NAME>)

 (:requirements :strips :typing)

 (:types <type1> <type2> ...)

 (:predicates (<PREDICATE_1_NAME> ?<arg1> - <type1> ...)

 (<PREDICATE_2_NAME> ...))

 (:action <ACTION_1_NAME>

 :parameters (?<par1> - <type1> ?<par2> - <type2> ...)

 :precondition < COND_FORMULA: PartiallySpecifiedState>

 :effect < EFFECT_FORMULA: ADDlist + DELETElist>)

…)

(define (problem <PROBLEM_NAME>)

 (:domain <DOMAIN_NAME>)

 (:objects <obj1> - <type1> <obj2> - <type2> ...)

 (:init <ATOM1> <ATOM2> ...)

 (:goal < COND_FORMULA: PartiallySpecifiedState >)

)

9

Matteo Matteucci – matteo.matteucci@polimi.it

STRIPS vs ADL Conditional Formulas

The :requirement clause defines the power of the language that should be understood

by the planner

• :strips

• Conjunction of atoms (AND atom1 ... atomn)

• If :equality added atoms my be in the form (= arg1 arg2)

• Only positive

• :adl

• equality (=) (= arg1 arg2)

• negation (NOT) (NOT atom1)

• conjunction (AND) (AND atom1 ... atomn)

• disjunction (OR) (OR atom1 ... atomn)

• quantifier (FORALL, EXISTS)

(FORALL (?v - t) (PREDICATE ?v))

(EXISTS (?v - t) (PREDICATE ?v))

10

Matteo Matteucci – matteo.matteucci@polimi.it

STRIPS vs ADL Effect Formulas

The :requirement clause defines the power of the language that should be understood

by the planner

• :strips

• Conjunction of added and deleted atoms (AND atom1 ... (NOT atomn))

• :adl

• Conditional effect:

 (WHEN PRECOND_FORMULA EFFECT_FORMULA)

• Universal quantified formula:

 (FORALL (?<v1> - <t1> ?<v2> - <t2>) EFFECT_FORMULA)

11

Matteo Matteucci – matteo.matteucci@polimi.it

Basic PDDL Example: Gripper Domain

Gripper task with four balls:

There is a robot that can move between two rooms and pick up or drop

balls with either of his two arms. Initially, all balls and the robot are in the

first room. We want the balls to be in the second room.

• Objects: The two rooms, four balls and two robot arms.

• Predicates: Is x a room? Is x a ball? Is ball x inside room y? Is robot

arm x empty? [...]

• Initial state: All balls and the robot are in the firs room. All robot arms

are empty. [...]

• Goal specification All balls must be in the second room.

• Actions/Operators: The robot can move between rooms, pick up a

ball or drop a ball.

12

Matteo Matteucci – matteo.matteucci@polimi.it

Gripper Domain: Objects

Objects in the gripper domain

• Rooms: rooma, roomb

• Balls: ball1, ball2, ball3, ball4

• Robot arms: left, right

In PDDL without typing

• (:objects rooma roomb ball1 ball2 ball3 ball4 left right)

In PDDL with typing

• (:types room ball robot-arm)

• (:objects rooma – room roomb – room

 ball1 – ball ball2 – ball ball3 – ball ball4 – ball

 left – robot-arm right – robot-arm)

13

Matteo Matteucci – matteo.matteucci@polimi.it

Gripper Domain: Predicates (without typing)

Predicates in the gripper domain without typing

• ROOM(x) – true iff x is a room

• BALL(x) – true iff x is a ball

• GRIPPER(x) – true iff x is a gripper (robot arm)

• at-robby(x) – true iff x is a room and the robot is in x

• at-ball(x, y) – true iff x is a ball, y is a room, and x is in y

• free(x) – true iff x is a gripper and x does not hold a ball

• carry(x, y) – true iff x is a gripper, y is a ball, and x holds y

In PDDL this translates into:

• (:predicates

 (ROOM ?x) (BALL ?x) (GRIPPER ?x)

 (at-robby ?x) (at-ball ?x ?y)

 (free ?x) (carry ?x ?y)

)

 14

Matteo Matteucci – matteo.matteucci@polimi.it

Gripper Domain: Predicates (with typing)

Predicates in the gripper domain with typing

• at-robby(x) – true iff x is a room and the robot is in x

• at-ball(x, y) – true iff x is a ball, y is a room, and x is in y

• free(x) – true iff x is a gripper and x does not hold a ball

• carry(x, y) – true iff x is a gripper, y is a ball, and x holds y

In PDDL this translates into:

• (:predicates

 (at-robby ?x – room)

 (at-ball ?x – balll ?y – room)

 (free ?x – robot-arm)

 (carry ?x – robot-arm ?y – ball)

)

15

Matteo Matteucci – matteo.matteucci@polimi.it

Gripper Domain: Initial State

The Initial state (according to the example text):

• ROOM(rooma) and ROOM(roomb) are true.

• BALL(ball1), ..., BALL(ball4) are true.

• GRIPPER(left), GRIPPER(right), free(left) and free(right) are true.

• at-robby(rooma), at-ball(ball1, rooma), ..., at-ball(ball4, rooma) are true.

• Everything else is false.

In PDDL this translate into:

• (:init

 (ROOM rooma) (ROOM roomb)

 (BALL ball1) (BALL ball2) (BALL ball3) (BALL ball4)

 (GRIPPER left) (GRIPPER right) (free left) (free right)

 (at-robby rooma) (at-ball ball1 rooma) (at-ball ball2 rooma)

 (at-ball ball3 rooma) (at-ball ball4 rooma)

)

16

Matteo Matteucci – matteo.matteucci@polimi.it

Gripper Domain: Goal State

The Goal state (according to the example text):

• at-ball(ball1, roomb), ..., at-ball(ball4, roomb) must be true.

• Everything else we don’t care about.

In PDDL this translates into:

• (:goal

 (and (at-ball ball1 roomb)

 (at-ball ball2 roomb)

 (at-ball ball3 roomb)

 (at-ball ball4 roomb)

)

)

17

Matteo Matteucci – matteo.matteucci@polimi.it

Gripper Domain: Movement Operator

The robot can move from x to y:

• Precondition: ROOM(x), ROOM(y) and at-robby(x) are true.

• Effect: at-robby(y) becomes true and at-robby(x) becomes false.

• Everything else doesn’t change.

In PDDL this translates into:

• (:action move

 :parameters (?x ?y)

 :precondition (and (ROOM ?x) (ROOM ?y) (at-robby ?x))

 :effect (and (at-robby ?y) (not (at-robby ?x)))

)

18

Matteo Matteucci – matteo.matteucci@polimi.it

Gripper Domain: Pick-up Operator

The robot can pick up x in y with z.

• Precondition: BALL(x), ROOM(y), GRIPPER(z), at-ball(x, y), at-

robby(y) and free(z) are true.

• Effect: carry(z, x) becomes true while at-ball(x, y) and free(z) become

false.

• Everything else doesn’t change.

In PDDL this translates into:

• (:action pick-up :parameters (?x ?y ?z)

 :precondition (and (BALL ?x) (ROOM ?y) (GRIPPER ?z)

 (at-ball ?x ?y) (at-robby ?y) (free ?z))

 :effect (and (carry ?z ?x) (not (at-ball ?x ?y)) (not (free ?z)))

)

19

Matteo Matteucci – matteo.matteucci@polimi.it

Gripper Domain: Drop Operator

The robot can drop x in y from z

• Precondition: BALL(x), ROOM(y), GRIPPER(z), carry(z,x), at-robby(y)

are true.

• Effect: at-ball(x, y) and free(z) become true while carry(z, x) becomes

false.

• Everything else doesn’t change.

In PDDL this translates into:

• (:action drop :parameters (?x ?y ?z)

 :precondition (and (BALL ?x) (ROOM ?y) (GRIPPER ?z)

 (carry ?z ?x) (at-robby ?y))

 :effect (and (at-ball ?x ?y) (free ?z) (not (carry ?z ?x)))

)

20

Matteo Matteucci – matteo.matteucci@polimi.it

Let’s solve it!

21

Using satplan to solve the gripper problem

• Download satplan (2006 version, winner of IPC)

• http://www.cs.rochester.edu/users/faculty/kautz/satplan/index.htm

• tar -zxvf SatPlan2006.tgz

• Compile satplan by issuing

• cd SatPlan2006

• make

• Run vanilla satplan (i.e., default options)

• cd include/bin/

• ./satplan -path ../../gripper/ -domain gripper_domain.pddl -problem

gripper_problem.pddl

• Observe the plan

• less gripper_problem.pddl.soln

Matteo Matteucci – matteo.matteucci@polimi.it

Exercise: The Block World in PDDL!

List of Predicates

• empty: the gripper is not holding a block

• holding(B): the gripper is holding block B

• on(B1,B2): block B1 is on top of block B2

• ontable(B): block B is on the table

• clear(B): block B has no blocks on top of it

and is not being held by the gripper

List of actions

22

Action Preconditions Add List Delete List

unstack(B1, B2) empty & clear(B1) &

on(B1, B2)

holding(B1),

clear(B2)

empty, on(B1, B2),

clear(B1)

pickup(B) empty & clear(B) &

ontable(B)

holding(B) empty, ontable(B),

clear(B)

stack(B1, B2) holding(B1) &

clear(B2)

empty, on(B1, B2),

clear(B1)

clear(B2),

holding(B1)

putdown(B) holding(B) empty, ontable(B),

clear(B)

holding(B)

Matteo Matteucci – matteo.matteucci@polimi.it

PDDL 2.1: Time (the idea)

A feasible plan is sometimes not enough, thus a new version of planner was

introduced to take into account:

 Durative actions: time

 Fluents: numbers

 Metrics: optimal plan

Time in planning (scheduling)

• actions take time to execute—how long an action takes to execute

may depend on the preconditions

• preconditions may need to hold when the action begins, or throughout

the execution of the action

• effects may not be true immediately and their effects may persist for

only a limited time—an action can have multiple effects on a fluent at

different times

23

Matteo Matteucci – matteo.matteucci@polimi.it

PDDL 2.1: Time (the code)

A feasible plan is sometimes not enough, thus a new version of planner was

introduced to take into account:

 Durative actions: time

 Fluents: numbers

 Metrics: optimal plan

In the Domain file

• (:durative-action <name>

:parametes (…)

:duration (= ?duration <time>)

:condition (…)

:effect (…))

 CONDITIONAL_FORMULA: at_start, overall, at_end

 EFFECT_FORMULA: at_start, at_end

24

Matteo Matteucci – matteo.matteucci@polimi.it

PDDL 2.1: Resources (the idea)

A feasible plan is sometimes not enough, thus a new version of planner was

introduced to take into account:

 Durative actions: time

 Fluents: numbers

 Metrics: optimal plan

Resources in planning

• A resource is any quantity or (set of) object(s) whose value or

availability determines whether an action can be executed

• Resources may be consumable (examples: money, fuel) or reusable

(example: a car which becomes available again after a trip)

• In some cases, actions may produce resources (examples: refueling,

hiring more staff, etc)

• When planning with resources, a solution is defined as a plan that

achieves the goals while allocating resources to actions so that all

resource constraints are satisfied

 25

Matteo Matteucci – matteo.matteucci@polimi.it

PDDL 2.1: Resources (the code)

A feasible plan is sometimes not enough, thus a new version of planner was

introduced to take into account:

 Durative actions: time

 Fluents: numbers

 Metrics: optimal plan

In the Domain definition

• (:functions (<name1> ?<obj1> - <type1>)

 (<name2> ?<obj2> - <type2>)

 (…))

 CONDITIONAL FORUMULA: = > < <= => + - * /

 EFFECT FORMULA:

• assign, increase, decrease, scale-up, scale-down

In the Problem definition

 (:init (= (<ATOM>) <#>))

26

Matteo Matteucci – matteo.matteucci@polimi.it

PDDL 2.1: Metrics (the idea)

A feasible plan is sometimes not enough, thus a new version of planner was

introduced to take into account:

 Durative actions: time

 Fluents: numbers

 Metrics: optimal plan

Optimal planning (and scheduling)

• As with search problems, we can distinguish between optimal and

satisficing solutions

• A satisficing plan is one that achieves the goal(s) without violating any

temporal or resource constraints

• An optimal plan is one that achieves the goal(s) while minimising (or

maximising) some metric—metric is often defined in terms of resource

usage

27

Matteo Matteucci – matteo.matteucci@polimi.it

PDDL 2.1: Metrics (the code)

A feasible plan is sometimes not enough, thus a new version of planner was

introduced to take into account:

 Durative actions: time

 Fluents: numbers

 Metrics: optimal plan

In the problem definition

• (:metric minimize[maximize] <objective_function>)

Built-in function:

• total-time

28

Matteo Matteucci – matteo.matteucci@polimi.it

PDDL 2.1 – IPC-2002

“We have a Four Gallon Jug of Water and

a Three Gallon Jug of Water and a Water

Pump. The challenge of the problem is to

be able to put exactly two gallons of water

in the Four Gallon Jug, even though there

are no markings on the Jugs.”

Drew McDermott. “The 1998 AI Planning Systems Competition”. AI Magazine (21):2, 2000.

 Also know from Die Hard 3 Movie!

29

Cognitive Robotics – PDDL
Matteo Matteucci – matteo.matteucci@polimi.it

