Cognitive Robotics — Robot Motion Planning

Matteo Matteucci — matteo.matteucci@polimi.it

Robot Motion Planning

“...eminently necessary since, by definition,
a robot accomplishes tasks by moving in the real world.”

J.-C. Latombe (1991)

Robot Motion Planning Goals

- Collision-free trajectories

- Robot should reach the goal
location as fast as possible

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Matteo Matteucci — matteo.matteucci@polimi.it - I

POLITECNICO DI MILANO

Robot Motion Planning

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

A Two Layered Approach

Lower Frequency

Trajectory Planning Goal Position

Current
Position

Trajectory

Higher Frequency Y
Trajectory Following

(and Obstacle Avoidance)

|
\ /]

l Motion Commands

p\

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

|What a Planner?
|

Random Sampling
- PRMs
RRT
T-RRT
SBL

Search Based Planning Algorithms
A*
ARA*
ANA*
AD*
D*

Open
Motion
Planning
Library

Search
Based
Planning
Library

Matteo Matteucci — matteo.matteucci@polimi.it - I

POLITECNICO DI MILANO

Pros and Cons

- PROS CONS

» Finds the optimal solution

Search Based » Peeslis o assign COStS High computational
* Use of Heuristics

Planning « Can state if a solution SO

exists (complete)

« Hard to assign costs
Random Sampling Fast in finding a feasible * Only probably complete
Planning solution (cannot be used to test
for existance)

Lets have a look at Search Based Methods (SBPL) because of
- The generality of approaches
- Their theoretical guarantees
- Their simplicity

POLITECNICO DI MILANO

Matteo Matteucci — matteo.matteucci@polimi.it - I

Graph (Search) Based Planning Basics

The overall idea:
- Generate a discretized representation of the planning problem

- Build a graph out of this discretized representation (e.g., through 4
neighbors or 8 neighbors connectivity)

- Search the graph for the optimal solution

- Can interleave the construction of the representation with the search
(i.e., construct only what is necessary)

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

Lattice Based Graphs for Navigation

Graph can be constructed by using motion primitives

set of motion primitives
pre-computed for each robot orientation
{action template)

%

m replicate it

W

_z"-":' & 5
= G5, 820 = 100
C5,8g) = 3

¥ b - }
:E: onling L AN
) . > :_#J:_ 5'.' = .Ih_ll .
by translating it A _
k o a 5:I
ﬂ il 1
=
¥4 ?f- g
."-"b.:_'l '-."_.
| 19 I|- I|-5|]

h

- Pros: sparse graph, feasible path, incorporate a variety of constraints
- Cons: possible incompleteness

Matteo Matteucci — matteo.matteucci@polimi.it - I

POLITECNICO DI MILANO

Lattice Based Graphs for Navigation

Graph can be constructed by using motion primitives
- Pros: sparse graph, feasible path, incorporate a variety of constraints
- Cons: possible incompleteness

planning on 4D (<x,y,orientation,velocity=) multi-resolution lattice using Anytime D*
[Likhachev & Ferguson, ‘09]

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

Lattice Based Graphs for Navigation

Graph can be constructed by using motion primitives
- Pros: sparse graph, feasible path, incorporate a variety of constraints
- Cons: possible incompleteness

planning in 8D (foothold planning) lattice-based graph for quadrupeds [Vernaza et al., '09]
using R* search [Likhachev & Stentz, ‘08]
5 ‘ ‘

»

7"

-

| ———— > »

X
2

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

Planning Problem Ingredients

Typical components of a Search-based Planner
- Graph construction (given a state what are its successor states)

- Cost function (a cost associated with every transition in the graph)
- Heuristic function (estimates of cost-to-goal)

Domain Dependent

- Graph search algorithm (for example, A* search)

Domain Independent

The graph can be built taking into account robot dynamics/kinematics
constraints

v & construct search the graph 7 —— g |
' the graph: for solution: =

o=

\J ==X :
motion primitives Syl % = — - =

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

B O
| Exact and Approximate Planning (in SBPL)

Different algorithms are available
Returning the optimal path (e.g., Dijstra, A*, ...)

Returning an € sub-optimal path
(e.g., weighted A*, ARA*, AD*, R*, D* Lite, ...)

Dijstra A* weighted A*

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

Searching Graphs for Least Cost Path

Given a graph search for the path that minimizes costs as much as possible

the cost c(5,5,,,) of
an edge from s, fo s

goal

Many search algorithms compute optimal g-values for relevant states
- g(s)—an estimate of the cost of a least-cost path from s, t0 S
- optimal values satisfy: g(s) = Ming.;, yeqs) 9(S7) + C(S7,S)

Least-cost path is a greedy path computed by backtracking:

- start with s, and from any state s move to the predecessor state s’
such that

s’ =argmin s” in pred(s) (g(S”)+C(S”’S))

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

A* Search

A* speeds up search by computing g-values for relevant states as

an (under) estimate of the cost
af a shortest path from 5 10 Sggy

the cost of a shortest path | —"" g 1(5’{]\ __,---—) f,.-f"'
ﬁ'ﬁ'm S stare 10 SfEHﬂH'f E[}fﬂj* _-__._._,-'I T -‘_"I fﬂ_“xf/l{ .

[- —@“ﬂ. \\\I
% . e

Heuristic function must be
- admissible: for every state s, h(s) < c*(s,s
- consistent (satisfy triangle inequality):

* h(SgoaI’SgoaI) =0
» for every s#s

goao

g0ar N(S) < c(s,succ(s)) + h(succ(s))

Admissibility follows from consistency and often
consistency follows from admissibility

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

A* Search Algorithm

Main function
0(S«ar) = O; all other g-values are infinite;

* OPEN = {Sgan}; —
. ComputePath(); Set of candidates for expansion

ComputePath function

- while(sg,, Is not expanded)
* remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

 expand s; — : :
For every expanded state g(s) is optimal
(if heuristics are consistent)

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

A* Search Algorithm

Main function

0(S«ar) = O; all other g-values are infinite;

* OPEN = {s¢an}s —

- ComputePath();

Set of candidates for expansion

ComputePath function
- while(s,,, IS hot expanded)

goal

* remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

* insert s into CLOSED;
- for every successor s’of s, that s’ not in CLOSED
* 1t g(s) >g(s) +c(s;s)

* g(s) =9g(s) +c(s,s),
* insert s’ into OPEN:

Tries to decrease g(s’) using the
found path from s, t0 s

start

Set of states already expanded

Matteo Matteucci — matteo.matteucci@polimi.it - I

POLITECNICO DI MILANO

A* Search Algorithm

ComputePath function
- while(sg,, Is not expanded)
* remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;
* insert s into CLOSED;
 for every successor s’'of s such that s’ not in CLOSED
* i g(s) >9g(s) +c(s.s)
« g(s) =g(s) + c(s,s); 9(S;) > 9(Sstart) *+ C(Sstar:S2)
* insert s’into OPEN;

g= o0

g=0 2 _
CLOSED = {} h=3 @ % ﬁ:ooo
OPEN = {S¢ .t}

next state to expand: Sg,

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

A* Search Algorithm

ComputePath function

- while(sg,, Is not expanded)
* remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;
* insert s into CLOSED,;
 for every successor s’'of s such that s’ not in CLOSED
* i g(s) >9g(s) +c(s.s)
* 9(s) =g(s) +c(s.s);
* insert s’ into OPEN:;

2
CLOSED = {s,..} h @ %
OPEN = {5y} ll

next state to expand: s,

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

A* Search Algorithm

ComputePath function
- while(sg,, Is not expanded)
* remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;
* insert s into CLOSED,;
 for every successor s’'of s such that s’ not in CLOSED
* i g(s) >9g(s) +c(s.s)
* 9(s) =g(s) +c(s.s);
* insert s’ into OPEN,;

=0 —>
CLOSED = {Sgtan: S2} h=3 @ %
OPEN = {s,,s,} Sug [

g= o0
h=1

next state to expand: s, /1'
I

Matteo Matteucci — matteo.matteucci@polimi.it - POLITECNICO DI MILANO

A* Search Algorithm

ComputePath function

- while(sg,, Is not expanded)
* remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;
* insert s into CLOSED,;
 for every successor s’'of s such that s’ not in CLOSED
* i g(s) >9g(s) +c(s.s)
* 9(s) =g(s) +c(s.s);
* insert s’ into OPEN:;

: g= 3
h=2 h=1
_ g=0 s g=>o

CLOSED = {s¢ar; S2, S1} h=3 2 h=0
OPEN = {S;,Sy0a} % [1
next state to expand: s, /1'

g= 2?2 g= o

h= h=1

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

A* Search Algorithm

ComputePath function

- while(sg,, Is not expanded)
* remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;
* insert s into CLOSED,;
 for every successor s’'of s such that s’ not in CLOSED
* i g(s) >9g(s) +c(s.s)
* 9(s) =g(s) +c(s.s);
* insert s’ into OPEN:;

Sgoal}
next state to expand: s

CLOSED = {Sstart’ 52’ Sl ’ S4} ; %
OPEN = {s,, @ l

goal

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

A* Search Algorithm

ComputePath function
- while(sg,, Is not expanded)
* remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;
* insert s into CLOSED,;
 for every successor s’'of s such that s’ not in CLOSED
* i g(s) >9g(s) +c(s.s)
* 9(s) =g(s) +c(s.s);
* insert s’ into OPEN,;

g=0 ——)(:)
CLOSED = {Sstart’ So1 51154 Sgoal} h=3 @ 2
OPEN = {s,} Soag [

g=>5
h=1

1
DONE! —>@/
: h=2

Matteo Matteucci — matteo.matteucci@polimi.it - POLITECNICO DI MILANO

A* Properties

A* Is guaranteed to
- return an optimal path in terms of the solution

- perform provably minimal number of state expansions

Algorithms state expansion:
- Dijkstra’s: expands states in the order of f = g values (roughly)

- A* Search: expands states in the order of f = g + h values

- Weighted A*:expands states in the order of f = g + € h values,
> 1= bias towards states that are closer to goal

Weighted A* Search in many domains, it has been shown to be orders of
magnitude faster than A*

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

.TECNICO DI MILANO

N A* Properties

Algorithms state expansion:
- Dijkstra’s: expands states in the order of f = g values (roughly)
- A* Search: expands states in the order of f = g + h values

25 Matteo Matteucci — matteo.matteucci@polimi.it POLITECNICO DI MILANO

N A* Properties

Algorithms state expansion:
- Dijkstra’s: expands states in the order of f = g values (roughly)
- A* Search: expands states in the order of f = g + h values

- Weighted A*:expands states in the order of f = g + € h values,
> 1= bias towards states that are closer to goal

POLITECNICO DI MILANO

26 Matteo Matteucci — matteo.matteucci@polimi.it _

N Recall the Two Layered Approach

Lower Frequency

Goal Position

Current
Position

Trajectory Following
(and Obstacle Avoidance)

27 Matteo Matteucci — matteo.matteucci@polimi.it _ POLITECNICO DI MILANO

I
| Obstacle Avoidance (Local Path Planning)

Obstacle avoidance should:
Follow the planned path

Avoid unexpected obstacle,
l.e., those that were not in the map

Several proposed methods in the literature

Potential field methods
[Borenstein, 1989]

Vector field histogram
[Borenstein, 1991, 1998, 2000]

Nearness diagram
[Minguez & Montano, 2000]

Curvature-Velocity [Simmons, 1996]

Dynamic Window Approach
[Fox, Burgard, Thrun, 1997]

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

The Simplest One ...

“‘Bugs” have little if any knowledge ...
- known direction to the goal
- only local sensing (walls/obstacles + encoders)

... and their world is reasonable!
- finite obstacles in any finite range
- a line intersects an obstacle finite times

Switch between two basic behaviors _
1. head toward goal

2. follow obstacles until you can assume a leftist

_ robot
head toward the goal again %\-

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

Bugs and Features ...

Each obstacle is fully circled before it is left at the point closest to the goals

- Advantages
* No global map required
« Completeness guaranteed
- Disadvantages
 Solution are often highly suboptimal

start

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

Vector Field Histograms (VHF) [Borenstein et al. 1991]

Use a local map of the environment and evaluate the angle to drive towards
- Environment represented in a grid (2 DOF) with
- The steering direction is computed in two steps:
- all openings for the robot to pass are found
* the one with lowest cost function G is selected
G = a - target_directiont+b - wheel_orientation+c - previous_direction

target _direction = alignment of the robot path with the goal _ _
wheel_orientation = difference between the new direction and the currrent wheel orientation
previous_direction = difference between the previously selected direction and the new direction

A p
=
o
5 threshold
5 |..|||Il; Ll LT ‘—»a
@ //\ -180° 0 180°

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

Curvature Velocity Methods (CVM) [Simmons et al. 1996]

CVMs add physical constraints from the robot and the environment on (v, w)
Assumption that robot is traveling on arcs (c= w / v) with acceleration

constraints
Obstacles are transformed in velocity space

An objective function to select the optimal speed

Matteo Matteucci — matteo.matteucci@polimi.it - I

I\ ‘ y |
\ ‘ CTJ?H'}? » }’mm)
‘ \ \\
\ Cﬂ:-'fn
- .
NN \ .Cro 0 yob.s')
NN \
N .
N C . 3 |
e) max CYHH?.T Vinax/
——Z/| 1) \
— | A
— //
A // f
TR
\
\ [I S - X
Simmons et al.

POLITECNICO DI MILANO

Vector Field Histogram+ (VFH+) [Borenstein et al. 1998]

VHF+ accounts also in a very simplified way for vehicle kinematics
- robot moving on arcs or straight lines

- obstacles blocking a given direction
also blocks all the trajectories (arcs)
going through this direction like in an
Ackerman vehicle

- oObstacles are enlarged so that all
kinematically blocked trajectories
are properly taken into account

Borenstein et al.

However VHF+ as VHF suffers
- Limitation if narrow areas (e.g. doors) have to be passed
- Local minima might not be avoided
- Reaching of the goal can not be guaranteed
- Dynamics of the robot not really considered

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

Dynamic Window Approach (DWA) [Fox et al. 1997]

The kinematics of the robot are considered via local search in velocity space:

- Consider only circular trajectories determined by pairs V =(v,w) of
translational and rotational speeds

- A pair V_=(v, w) is considered admissible, if the robot is able to stop
before it reaches the closest obstacle on the corresponding curvature.

- A dynamic window restricts the reachable velocities V to those that
can be reached within a short time given limited robot accelerations

“\ A 90 cm/sec

\/

_ { VE|v—asy "tv+ay -t
d WE [W—Aror "t, W+ Ay " t]

dynamic window V| \
d \ ‘\\

A, . L
v\
dcttal velocity] DWA Search Space

Vr =Vs N"Va MV4

-90 deg/sec 90 deg/sec

Fox et al.

Matteo Matteucci — matteo.matteucci@polimi.it - I

POLITECNICO DI MILANO

I
| How to choose (v,w)?
|

Steering commands are chosen maximizing a heuristic navigation function:

Minimize the travel time by “driving fast in the right direction”
Planning restricted to V, space [Fox, Burgard, Thrun ‘97]

G(v,m) =o(a. -heading(v,m)+p -dist(v,®)+y -velocity(v,o))

Alignment with Distance to closest obstacle Forward velocity of
target direction intersecting with curvature the robot

Global approach [Brock & Khatib 99] in <x,y>-space uses

[Forward robo@ @ global path }

NF = a-vel+ p-nf + yAnf + dgoal

[Cost to reachm (—Qnearness 1

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

DWA Algorithm (as implemented in ROS movebase)

The basic idea of the Dynamic Window Approach (DWA) algorithm follows ...

1. Discretely sample robot control space

H 6.5 BP9 DI EASE D B € 565 Hr B n B B P B 8 P PO 0° 0 o o0 mo 00
2. For each sampled velocity, perform (00— Dot e 2 Gty o Ea At o+ Ea M)

forward simulation from current state
to predict what would happen if applied
for some (short) time.

3. Evaluate (score) each trajectory
resulting from the forward simulation S

4. Discard illegal trajectories, I.e., 60 G5 el T 615 62 6
those that collide with obstacles, and
pick the highest-scoring trajectory

What about non circular kinematics?

Clothoid: S(z) = fﬂ “sin(t)dt, CO(x) = fﬂ cos(t2) d.

Matteo Matteucci — matteo.matteucci@polimi.it - I POLITECNICO DI MILANO

N Recall the Two Layered Approach

Lower Frequency

Goal Position

Current
Position

Trajectory

Higher Frequency

Motion Commands

37 Matteo Matteucci — matteo.matteucci@polimi.it POLITECNICO DI MILANO

Cognitive Robotics — Robot Motion Planning

Matteo Matteucci — matteo.matteucci@polimi.it

