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Robot Motion Planning 

 

“…eminently necessary since, by definition,  

a robot accomplishes tasks by moving in the real world.” 

 

J.-C. Latombe (1991) 

 

  

 Robot Motion Planning Goals 

 

• Collision-free trajectories 

• Robot should reach the goal  

location as fast as possible 
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Robot Motion Planning 
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A Two Layered Approach 
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What a Planner? 

Random Sampling  

• PRMs 

• RRT 

• T-RRT 

• SBL 

• … 

 

Search Based Planning Algorithms 

• A* 

• ARA* 

• ANA* 

• AD* 

• D* 

• … 
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Pros and Cons 

PROS CONS 

Search Based 

Planning 

• Finds the optimal solution 

• Possible to assign costs 

• Use of Heuristics 

• Can state if a solution 

exists (complete) 

• High computational 

cost 

Random Sampling 

Planning 

• Fast in finding a feasible 

solution 

• Hard to assign costs 

• Only probably complete 

(cannot be used to test 

for existance) 
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Lets have a look at Search Based Methods (SBPL) because of 

• The generality of approaches 

• Their theoretical guarantees 

• Their simplicity 
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The overall idea:  

• Generate a discretized representation of the planning problem  

• Build a graph out of this discretized representation (e.g., through 4 

neighbors or 8 neighbors connectivity) 

• Search the graph for the optimal solution 

 

 

 

 

 

 

• Can interleave the construction of the representation with the search 

(i.e., construct only what is necessary) 

 

Graph (Search) Based Planning Basics 
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Lattice Based Graphs for Navigation 

Graph can be constructed by using motion primitives 

 

 

 

 

 

 

 

 

 

 

 

 

• Pros: sparse graph, feasible path, incorporate a variety of constraints 

• Cons: possible incompleteness 
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Lattice Based Graphs for Navigation 

Graph can be constructed by using motion primitives 

• Pros: sparse graph, feasible path, incorporate a variety of constraints 

• Cons: possible incompleteness 
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Lattice Based Graphs for Navigation 

Graph can be constructed by using motion primitives 

• Pros: sparse graph, feasible path, incorporate a variety of constraints 

• Cons: possible incompleteness 
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Planning Problem Ingredients  

Typical components of a Search-based Planner   

• Graph construction (given a state what are its successor states)  

• Cost function (a cost associated with every transition in the graph) 

• Heuristic function (estimates of cost-to-goal) 

 

• Graph search algorithm (for example, A* search)  

 

The graph can be built taking into account robot dynamics/kinematics 

constraints 
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Domain Dependent 

Domain Independent 
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Exact and Approximate Planning (in SBPL) 

 

Different algorithms are available  

• Returning the optimal path (e.g., Dijstra, A*, …) 

• Returning an ε sub-optimal path  

(e.g., weighted A*, ARA*, AD*, R*, D* Lite, ...) 
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Searching Graphs for Least Cost Path 

Given a graph search for the path that minimizes costs as much as possible 

 

 

 

 

 

 

 

Many search algorithms compute optimal g-values for relevant states 

• g(s)–an estimate of the cost of a least-cost path from sstart to s 

• optimal values satisfy: g(s) = mins’’ in pred(s) g(s’’) + c(s’’,s) 

Least-cost path is a greedy path computed by backtracking:  

• start with sgoal and from any state s move to the predecessor state s’ 

such that  

s’ =argmin s’’ in pred(s) (g(s’’)+c(s’’,s)) 
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A* Search 

A* speeds up search by computing g-values for relevant states as 

 

 

 

 

 

 

 

Heuristic function must be 

• admissible: for every state s, h(s) ≤ c*(s,sgoal) 

• consistent (satisfy triangle inequality): 

• h(sgoal,sgoal) = 0  

• for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s)) 

Admissibility follows from consistency and often  

consistency follows from admissibility 
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A* Search Algorithm 

Main function 

• g(sstart) = 0; all other g-values are infinite;  

• OPEN = {sstart}; 

• ComputePath(); 

 

ComputePath function 

• while(sgoal is not expanded) 

• remove s with the smallest [f(s) = g(s)+h(s)] from OPEN; 

• expand s; 
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Set of candidates for expansion 

For every expanded state g(s) is optimal 

(if heuristics are consistent) 
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A* Search Algorithm 

Main function 

• g(sstart) = 0; all other g-values are infinite;  

• OPEN = {sstart}; 

• ComputePath(); 

 

ComputePath function 

• while(sgoal is not expanded) 

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN; 

• insert s into CLOSED; 

• for every successor s’of ssuch that s’ not in CLOSED 

• if g(s’) > g(s) + c(s,s’) 

• g(s’) = g(s) + c(s,s’); 

• insert s’ into OPEN; 
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Set of candidates for expansion 

Set of states already expanded 

Tries to decrease g(s’) using the 

found path from sstart to s 
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A* Search Algorithm 

ComputePath function 

• while(sgoal is not expanded) 

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN; 

• insert s into CLOSED; 

• for every successor s’of s such that s’ not in CLOSED 

• if g(s’) > g(s) + c(s,s’) 

• g(s’) = g(s) + c(s,s’); 

• insert s’ into OPEN; 

 

 

CLOSED = {} 

OPEN = {sstart} 

next state to expand: sstart 

g(s2) > g(sstart) + c(sstart,s2) 
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A* Search Algorithm 

ComputePath function 

• while(sgoal is not expanded) 

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN; 

• insert s into CLOSED; 

• for every successor s’of s such that s’ not in CLOSED 

• if g(s’) > g(s) + c(s,s’) 

• g(s’) = g(s) + c(s,s’); 

• insert s’ into OPEN; 

 

 

CLOSED = {sstart} 

OPEN = {s2} 

next state to expand: s2 
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A* Search Algorithm 

ComputePath function 

• while(sgoal is not expanded) 

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN; 

• insert s into CLOSED; 

• for every successor s’of s such that s’ not in CLOSED 

• if g(s’) > g(s) + c(s,s’) 

• g(s’) = g(s) + c(s,s’); 

• insert s’ into OPEN; 

 

 

CLOSED = {sstart, s2} 

OPEN = {s1,s4} 

next state to expand: s1 
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A* Search Algorithm 

ComputePath function 

• while(sgoal is not expanded) 

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN; 

• insert s into CLOSED; 

• for every successor s’of s such that s’ not in CLOSED 

• if g(s’) > g(s) + c(s,s’) 

• g(s’) = g(s) + c(s,s’); 

• insert s’ into OPEN; 

 

 

CLOSED = {sstart, s2, s1} 

OPEN = {s4,sgoal} 

next state to expand: s4 
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A* Search Algorithm 

ComputePath function 

• while(sgoal is not expanded) 

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN; 

• insert s into CLOSED; 

• for every successor s’of s such that s’ not in CLOSED 

• if g(s’) > g(s) + c(s,s’) 

• g(s’) = g(s) + c(s,s’); 

• insert s’ into OPEN; 

 

 

CLOSED = {sstart, s2, s1 , s4} 

OPEN = {s3,sgoal} 

next state to expand: sgoal 
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A* Search Algorithm 

ComputePath function 

• while(sgoal is not expanded) 

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN; 

• insert s into CLOSED; 

• for every successor s’of s such that s’ not in CLOSED 

• if g(s’) > g(s) + c(s,s’) 

• g(s’) = g(s) + c(s,s’); 

• insert s’ into OPEN; 

 

 

CLOSED = {sstart, s2, s1 ,s4 , sgoal} 

OPEN = {s3} 

 

  DONE! 
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A* Properties 

A* is guaranteed to  

• return an optimal path in terms of the solution 

• perform provably minimal number of state expansions 

 

Algorithms state expansion: 

• Dijkstra’s: expands states in the order of f = g values (roughly) 

• A* Search: expands states in the order of f = g + h values 

• Weighted A*:expands states in the order of f = g + ε h values,  

ε> 1= bias towards states that are closer to goal 

 

Weighted A* Search in many domains, it has been shown to be orders of 

magnitude faster than A* 
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A* Properties 
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sgoal 

sstart 

Algorithms state expansion: 

• Dijkstra’s: expands states in the order of f = g values (roughly) 
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Algorithms state expansion: 

• Dijkstra’s: expands states in the order of f = g values (roughly) 

• A* Search: expands states in the order of f = g + h values 

 

sgoal 

sstart 

A* Properties 
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Algorithms state expansion: 

• Dijkstra’s: expands states in the order of f = g values (roughly) 

• A* Search: expands states in the order of f = g + h values 

• Weighted A*:expands states in the order of f = g + ε h values,  

ε> 1= bias towards states that are closer to goal 

 

A* Properties 

sstart 
sgoal 

key to finding solution fast: 

shallow minima 
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Recall the Two Layered Approach 

27 

Trajectory Planning  

Trajectory Following 

(and Obstacle Avoidance) 

Goal Position 

Higher Frequency 
Current 

Position 
Trajectory 

SBPL Planner 

Lower Frequency 

Motion Commands 

? 



Matteo Matteucci – matteo.matteucci@polimi.it 

Obstacle Avoidance (Local Path Planning) 

Obstacle avoidance should: 

• Follow the planned path 

• Avoid unexpected obstacle,  

i.e., those that were not in the map 

Several proposed methods in the literature 

• Potential field methods  

[Borenstein, 1989] 

• Vector field histogram  

[Borenstein, 1991, 1998, 2000] 

• Nearness diagram  

[Minguez & Montano, 2000] 

• Curvature-Velocity [Simmons, 1996] 

• Dynamic Window Approach  

[Fox, Burgard, Thrun, 1997] 

• … 
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The Simplest One … 

 

“Bugs” have little if any knowledge … 

• known direction to the goal 

• only local sensing  (walls/obstacles + encoders) 

… and their world is reasonable! 

• finite obstacles in any finite range 

• a line intersects an obstacle finite times  

 

Switch between two basic behaviors 

1. head toward goal 

2. follow obstacles until you can  

head toward the goal again 
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assume a leftist 

robot 
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Bugs and Features … 

Each obstacle is fully circled before it is left at the point closest to the goals 

• Advantages 

• No global map required 

• Completeness guaranteed 

• Disadvantages 

• Solution are often highly suboptimal 
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Vector Field Histograms (VHF) [Borenstein et al. 1991] 
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Use a local map of the environment and evaluate the angle to drive towards  

• Environment represented in a grid (2 DOF) with  

• The steering direction is computed in two steps: 

• all openings for the robot to pass are found 

• the one with lowest cost function G is selected 

 

 

 

target_direction = alignment of the robot path with the goal 
wheel_orientation = difference between the new direction and the currrent wheel orientation 
previous_direction = difference between the previously selected direction and the new direction 
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Curvature Velocity Methods (CVM) [Simmons et al. 1996] 

CVMs add physical constraints from the robot and the environment on (v, w) 

• Assumption that robot is traveling on arcs (c= w / v) with acceleration 

constraints  

• Obstacles are transformed in velocity space 

• An objective function to select the optimal speed 
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Simmons et al. 
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Vector Field Histogram+ (VFH+) [Borenstein et al. 1998] 

VHF+ accounts also in a very simplified way for vehicle kinematics  

• robot moving on arcs or straight lines 

• obstacles blocking a given direction  

also blocks all the trajectories (arcs)  

going through this direction like in an 

Ackerman vehicle 

• obstacles are enlarged so that all  

kinematically blocked trajectories  

are properly taken into account 

 

However VHF+ as VHF suffers 

• Limitation if narrow areas (e.g. doors) have to be passed 

• Local minima might not be avoided 

• Reaching of the goal can not be guaranteed 

• Dynamics of the robot not really considered 
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Borenstein et al. 
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Dynamic Window Approach (DWA) [Fox et al. 1997] 

The kinematics of the robot are considered via local search in velocity space: 

• Consider only circular trajectories determined by pairs Vs=(v,ω) of 

translational and rotational speeds 

• A pair Va=(v, ω) is considered admissible, if the robot is able to stop 

before it reaches the closest obstacle on the corresponding curvature. 

• A dynamic window restricts the reachable velocities Vd to those that 

can be reached within a short time given limited robot accelerations 
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Vr  Vs Va Vd 

DWA Search Space 

Fox et al. 
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How to choose (v,ω)? 

Steering commands are chosen maximizing a heuristic navigation function: 

• Minimize the travel time by “driving fast in the right direction” 

• Planning restricted to Vr space [Fox, Burgard, Thrun ‘97] 

 

 

 

 

 

 

• Global approach [Brock & Khatib 99] in <x,y>-space uses 
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Alignment with 

target direction 

Distance to closest obstacle 

intersecting with curvature 

Forward velocity of 

the robot 

Gv,  heading(v,) dist(v,) velocity(v,) 

Forward robot velocity 

Cost to reach the goal Goal nearness 

Follows global path 
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DWA Algorithm (as implemented in ROS movebase) 

The basic idea of the Dynamic Window Approach (DWA) algorithm follows … 

1. Discretely sample robot control space 

2. For each sampled velocity, perform  

forward simulation from current state  

to predict what would happen if applied  

for some (short) time. 

3. Evaluate (score) each trajectory  

resulting from the forward simulation 

4. Discard illegal trajectories, i.e., 

those that collide with obstacles, and 

pick the highest-scoring trajectory 

 

What about non circular kinematics? 
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Clothoid: 
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Recall the Two Layered Approach 
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