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Dimensionality Reduction

We have already encountered this idea before to remove unnecessary 

features dealing with the bias-variance trade-off in regression …

Dimensionality reduction can be used with several aims:

• May help to eliminate irrelevant features or reduce noise

• Avoid curse of dimensionality

• Reduce amount of time and memory required by data mining algorithms

• Allow data to be more easily visualized

Principal Component Analysis is just one of the possible techniques to 

perform dimensionality reduction … it is linear and easy to understand!



3

Variance and Spread

Variance is a measure of the spread of the data along dimension 𝑋𝑖
having mean 𝑋𝑖 (claimed to be the original measure of data variability)

Covariance is a measure of how much each of the dimensions varies from 

the mean with respect to each other. 

Covariance is measured between 2 dimensions to see if there is a 

relationship between the spread in the 2 dimensions …

𝜎𝑖𝑖 = 𝜎𝑖
2 =

σ𝑛=1
𝑁 𝑋𝑛𝑖 − 𝑋𝑖

2

𝑁 − 1
=
σ𝑛=1
𝑁 𝑋𝑛𝑖 − 𝑋𝑖 𝑋𝑛𝑖 − 𝑋𝑖

𝑁 − 1

𝜎𝑖𝑗 =
σ𝑛=1
𝑁 𝑋𝑛𝑖 − 𝑋𝑖 𝑋𝑛𝑗 − 𝑋𝑗

𝑁 − 1
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Covariance Interpretation

Say you have a 2-dimensional data set

• 𝑋1: number of hours studied for a subject

• 𝑋2: marks obtained in that subject

Assume the covariance is: 104.53

What does this value mean?

• Exact value is not as important as its sign

• A positive value indicates that both dimensions increase or decrease together

• A negative value indicates while one increases the other decreases

• If covariance is zero the two dimensions are independent of each other
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Covariance Matrix (1/2)

Covariance Matrix represents covariance, i.e., dependency/redundancy, 

among data dimensions 

Properties:

• Diagonal 𝜎𝑖𝑖 represents variance of 𝑋𝑖 variable

• 𝜎𝑖𝑗 represents covariance between 𝑋𝑖 and 𝑋𝑗 variables

• 𝜎𝑖𝑗 = 𝜎𝑗𝑖, hence matrix is symmetrical about the diagonal

• 𝑝-dimensional data will result in a 𝑝 × 𝑝 covariance matrix

Σ =

𝜎11 ⋯ 𝜎1𝑝
⋮ ⋱ ⋮
𝜎𝑝1 ⋯ 𝜎𝑝𝑝
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Covariance Matrix (2/2)

Let’s consider zero mean data in the form of 𝑁 × 𝑝 data matrix 𝑋

• Columns of 𝑋 correspond to all observed measurements of an attribute 𝑋𝑗

• Rows of 𝑋 correspond to the measurements from each data point 𝑋𝑖

We can write the 𝑝 × 𝑝 covariance matrix Σ𝑋 of attributes from the data

• The diagonal terms of Σ𝑋 are the variances of the attributes

• The off-diagonal terms of Σ𝑋 are the covariances between the attributes

ΣX =
1

𝑁 − 1
𝑋 − 𝑋

𝑇
𝑋 − 𝑋 =

1

𝑁 − 1
𝑋𝑇𝑋
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Principal Component Analysis (PCA) 

Given 𝑁 data vectors 𝑋 ∈ ℜ𝑝 find 𝑘 ≤ 𝑝 orthogonal vectors, i.e., the 

principal components, that can be best used to represent data

• The first principal component is the normalized linear combination of the 

features that has maximal variance (captures the highest variability in data)

• The second principal components is the linear combination that has maximal 

variance among all combinations uncorrelated to the first one

Original axes
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𝑍1 = 𝜙11𝑋1 + 𝜙21𝑋2 +⋯+𝜙𝑝1𝑋𝑝; ෍

𝑗=1

𝑝

𝜙𝑗1
2 = 1

𝑍2 = 𝜙12𝑋1 + 𝜙22𝑋2 +⋯+𝜙𝑝2𝑋𝑝; ෍

𝑗=1

𝑝

𝜙𝑗2
2 = 1

𝑍2 ⊥ 𝑍1
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First Principal Component

The first principal component of a set of features 𝑋1, 𝑋2, . . . , 𝑋𝑝 is the 

normalized linear combination of the features with the largest variance:

Some important notes about this definition

• Elements 𝜙11, 𝜙21, … , 𝜙𝑝1 are called loadings of the first principal component

• Loadings make the 𝜙1 = 𝜙11 𝜙21… 𝜙𝑝1
𝑇

the principal component vector

• Normalized means σ𝑗=1
𝑝

𝜙𝑗1
2 = 𝜙1

𝑇𝜙1 = 1, otherwise setting these elements to 

be arbitrarily large in absolute value could result in an arbitrarily large variance

𝑍1 = 𝜙11𝑋1 + 𝜙21𝑋2 +⋯+ 𝜙𝑝1𝑋𝑝
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Computing the First Principal Component (1/2)

Suppose we have a 𝑁 × 𝑝 data set 𝑋 in the form of a matrix with rows 

representing our data. Each point principal score is defined as:

If we force each of the features 𝑋𝑗 to have zero mean, so does 𝑍1 (for any 

values of loadings 𝜙𝑗1), the sample variance of 𝑍𝑛1 can be written as 

𝑍𝑛1 = 𝜙11𝑋𝑛1 + 𝜙21𝑋𝑛2 +⋯+𝜙𝑝1𝑋𝑛𝑝; 𝑤𝑖𝑡ℎ ෍

𝑗=1

𝑝

𝜙𝑗1
2 = 1

1

𝑁
෍

𝑛=1

𝑁

𝑍𝑛1 − 𝑍1
2
=
1

𝑁
෍

𝑛=1

𝑁

𝑍𝑛1
2 =

1

𝑁
෍

𝑛=1

𝑁

෍

𝑗=1

𝑝

𝜙𝑗1𝑋𝑛𝑗

2

; 𝑤𝑖𝑡ℎ ෍

𝑗=1

𝑝

𝜙𝑗1
2 = 1
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Computing the First Principal Component (2/2)

To find the first principal component

we have to find

This can be solved via Singular Value Decomposition (SVD) of matrix 𝑋

𝑎𝑟𝑔𝑚𝑎𝑥𝜙11,𝜙21,…,𝜙𝑝1

1

𝑁
෍

𝑛=1

𝑁

෍

𝑗=1

𝑝

𝜙𝑗1𝑋𝑛𝑗

2

; 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ෍

𝑗=1

𝑝

𝜙𝑗1
2 = 1

𝑍𝑛1 = 𝜙11𝑋𝑛1 + 𝜙21𝑋𝑛2 +⋯+𝜙𝑝1𝑋𝑛𝑝; 𝑤𝑖𝑡ℎ ෍

𝑗=1

𝑝

𝜙𝑗1
2 = 1

More on this later …
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Geometric Interpretation of the First Principal Component

The loading vector 𝜙1 = [𝜙11 𝜙21… 𝜙𝑝1] defines the direction in feature 

space along which the data vary the most

If we project the 𝑁 data points 𝑋 ∈ ℜ𝑝

onto this direction, the projected values

are the principal component scores

𝑍11, . . . , 𝑍𝑛1 themselves.

Best linear projection on a one-dimensional subspace of the original 

dataset, i.e., it preserves most of the variance/spread in the data
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Further Principal Components

Second principal component 𝑍2 is the linear combination of 𝑋1, 𝑋2, . . . , 𝑋𝑝
with maximal variance among all combinations uncorrelated with 𝑍1

with second principal component scores 𝑍12, . . . , 𝑍𝑛2, and second 

principal component loading vector 𝜙2 = 𝜙12 𝜙22… 𝜙𝑝2

There are at most min 𝑁 − 1, 𝑝 principal components, sometimes less

The principal component directions 𝜙1, 𝜙2, … , 𝜙min 𝑁−1,𝑝 are the right 

singular vectors of the data matrix 𝑋 and the component variances are 

1/𝑁 times the squares of the singular values

𝑍𝑛2 = 𝜙12𝑋𝑛1 + 𝜙22𝑋𝑛2 +⋯+ 𝜙𝑝2𝑋𝑛𝑝; ෍

𝑗=1

𝑝

𝜙𝑗2
2 = 1

More on this later …

More on this 

later …
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Geometric Interpretation of PCA (continued)

The loading vector 𝜙1 = [𝜙11 𝜙21… 𝜙𝑝1] defines a direction in feature 

space along which the data vary the most, the loading vector 𝜙2 =
[𝜙12 𝜙22… 𝜙𝑝2] defines an orthogonal direction.

The principal component scores

𝑍11, . . . , 𝑍𝑛1 and 𝑍12, . . . , 𝑍𝑛2 are the

points coordinates in the new reference

system (subspace) defined by the

principal components.

The relationship between the subspaces is a rotation with a stretch, you 

have also a projection if 𝑘 < 𝑝

Original axes
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A span of a set of vectors 𝑋1, 𝑋2, … , 𝑋𝑝 is the set of vectors that can be 

written as a linear combination of 𝑋1, 𝑋2, … , 𝑋𝑝

A basis for ℜ𝑝is a set of vectors which

• Spans ℜ𝑝, i.e., any vector in the 𝑝-dimensional space

can be written as linear combination of these vectors.

• Are linearly independent, i.e., orthogonal 

Any set of 𝑝-linearly independent vectors, i.e., orthogonal vectors, form a 

basis vectors for ℜ𝑝

Change of Basis

𝑠𝑝𝑎𝑛 𝑋1, 𝑋2, … , 𝑋𝑝 = 𝑐1𝑋1 + 𝑐2𝑋2 +⋯+ 𝑐𝑝𝑋𝑝|𝑐1, 𝑐2, … , 𝑐𝑝 ∈ ℜ

Basis

*
(𝑐1, 𝑐2)(𝑐1, 𝑐2)
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Orthogonal/Orthonormal Basis

Two vectors are orthogonal if their inner product is zero. 

An orthonormal basis of a vector space 𝑉, with inner product, is a set of 

basis vectors whose elements are orthogonal and of magnitude 1

• To change the vectors of an orthogonal basis into an orthonormal basis just 

multiply by the inverse of their norm

• The standard basis of the 𝑝-dimensional Euclidean space ℜ𝑝, i.e., 1,0 0,1 , is 

an example of orthonormal (and ordered) basis

𝑎𝑇𝑏 =෍

𝑖=1

𝑝

𝑎𝑖𝑏𝑖 = 0
𝑐1, 𝑐2 𝑎

**

𝑐1, 𝑐2 𝑏

𝑎 = 1𝑏 = 1

𝑐1, 𝑐2 𝑎

*

*
𝑐1, 𝑐2 𝑏

𝑎 ≠ 1𝑏 ≠ 1
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PCA as a Change of Basis

Let 𝑋 and 𝑍 be two 𝑁 × 𝑝 matrices related by a linear transformation Φ, 

being 𝑋 the original recoded dataset and 𝑍 a re-representation of it

being 𝜙1,𝜙2, … , 𝜙𝑝 the columns of Φ, Xn the rows of 𝑋, 𝑍𝑛 the rows of 𝑍

What we have here is that:

• Φ is a matrix that transforms 𝑋 into 𝑍

• Geometrically, Φ is a rotation and a stretch (scaling)

• The columns of Φ, 𝜙1
𝑇 𝜙2

𝑇 …𝜙𝑝
𝑇 are a set of new

basis vectors for expressing the rows of 𝑋

𝑍 = 𝑋Φ

𝑋

*
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PCA as a Change of Basis

Let 𝑋 and 𝑍 be two 𝑁 × 𝑝 matrices related by a linear transformation Φ, 

being 𝑋 the original recoded dataset and 𝑍 a re-representation of it

It does not change the data, just the representation. If 𝜙1, … , 𝜙𝑝 are 

orthonormal we have a pure rotation, otherwise we have also a stretch

𝑍 = 𝑋1 … 𝑋𝑝 𝜙1 … 𝜙𝑝

𝑍 =

𝜙1𝑋11 ⋯ 𝜙𝑝𝑋1𝑝
⋮ ⋱ ⋮

𝜙1𝑋𝑁1 ⋯ 𝜙𝑝𝑋𝑁𝑝

Projection of 𝑋𝑖 point on the 
𝑝 components, i.e., on the 

new 𝜙1, … , 𝜙𝑝 basis
How do we select 

the new basis?

𝑍 = 𝑋Φ
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How to select the new basis?

PCA extracts relevant information from the given data, i.e., removes 

redundant information, while retaining the maximum information.

Uncorrelated signals have no redundancy, while

correlated signals introduce redundancy

Information can be represented by the spread of

the data, or as signal-to-noise ratio (SNR)

Principal components have high SNR, i.e., high variance, and they are 

orthogonal, i.e., have low redundancy

𝑆𝑁𝑅 = 𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2 /𝜎noise

2 **
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Data Covariance Matrix and Change of Basis 

Suppose we can manipulate Σ𝑋 via the change of basis

Our goals are to find the Φ so that covariance matrix Σ𝑍

1. Shows minimal redundancy as measured by off-diagonal elements, i.e. we 

would like each variable to co-vary as little as possible with other variables, so 

to minimize data redundancy

2. Maximizes the signal measured by variance terms on the diagonal, so to 

maximize signal-to-noise ratio

The optimized covariance matrix Σ𝑍 should be a diagonal matrix

𝑍 = 𝑋Φ
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PCA and Diagonalization (1/2)

To compute 𝑋 principal components Φ we want Σ𝑍 to become diagonal

We know that 𝑋𝑇𝑋 is symmetric, and it can be diagonalized by the 

orthogonal matrix 𝑉 formed with its 𝑟 ≤ 𝑝 eigenvectors arranged by 

columns, where 𝑟 is the rank of 𝑋𝑇𝑋

Σ𝑍 =
1

𝑁 − 1
𝑍𝑇𝑍 =

1

𝑁 − 1
𝑋Φ 𝑇(𝑋Φ)

=
1

𝑁 − 1
Φ𝑇𝑋𝑇𝑋Φ

𝑋𝑇𝑋 = 𝑉D𝑉𝑇

Let 𝜙𝑗 composed by 

the 𝑋𝑇𝑋 eigenvectors

Matrix D is the diagonal 

matrix of 𝑋𝑇𝑋 eigenvalues

I suppose you know 

about eigenvectors 

and eigenvalues 
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PCA and Diagonalization (2/2)

By choosing 𝜙𝑗 as the set of 𝑋𝑇𝑋 eigenvectors, we get Φ = 𝑉

In an orthonormal basis we have for the transpose ΦTΦ = Φ−1Φ = 𝐼

Σ𝑍 =
1

𝑁 − 1
𝑋Φ 𝑇 𝑋Φ =

1

𝑁 − 1
Φ𝑇𝑋𝑇𝑋Φ

=
1

𝑁 − 1
Φ𝑇𝑉𝐷𝑉𝑇Φ =

1

𝑁 − 1
Φ𝑇 ΦDΦ𝑇 Φ

=
1

𝑁 − 1
ΦTΦ D ΦTΦ

Σ𝑍 =
1

𝑁 − 1
ΦTΦ 𝐷 ΦTΦ =

1

𝑁 − 1
D Selecting 𝜙𝑗 to be 𝑋𝑇𝑋

eigenvectors works! 

Recall the constrain 

σ𝑗=1
𝑝

𝜙𝑗1
2 = 1
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PCA and Singular Values Decomposition (1/5)

The Singular Values Decomposition (SVD) of a 𝑁 × 𝑝 matrix 𝐴 is:

Where we have:

• 𝑈 is the N × 𝑟 orthonormal matrix, i.e., 𝑈𝑇𝑈 = 𝐼, of 𝐴𝐴𝑇eigenvectors

• 𝑉 is the r × 𝑝 orthonormal matrix, i.e, 𝑉𝑇𝑉 = 𝐼, of 𝐴𝑇𝐴 eigenvectors

• Λ is the 𝑟 × 𝑟 diagonal matrix of the squared root eigenvalues of 𝐴 arranged

in non increasing order

• 𝑟 is the rank of 𝐴, i.e., the number of linearly independent columns

Note that from 𝑋 = 𝑈Λ𝑉𝑇we get the previous result

𝐴 = 𝑈ΛVT

𝑋𝑇𝑋 = 𝑈Λ𝑉𝑇 𝑇 𝑈Λ𝑉𝑇 = 𝑉Λ𝑈𝑇𝑈Λ𝑉𝑇 = 𝑉ΛΛ𝑉𝑇 = 𝑉𝐷𝑉𝑇
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PCA and Singular Values Decomposition (2/5)

If we compute the SVD of a 𝑋 then we can get Φ = 𝑉:

𝑋 = 𝑈ΛVT

VT

𝑋 𝑈

Λ

=

Φ = 𝑉

𝑉
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PCA and Singular Values Decomposition (2/5)

If we compute the SVD of a 𝑋 then we can get Φ = 𝑉:

𝑋 = 𝑈ΛVT

VT

𝑋 𝑈

Λ

= 𝑍 𝑈

Λ

=

𝑍 = 𝑋Φ = 𝑈ΛVT𝑉 = 𝑈Λ
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PCA and Singular Values Decomposition (3/5)

If we compute the SVD of a 𝑋 then we can get Φ = 𝑉:

𝑋 = 𝑈ΛVT 𝑍 = 𝑋Φ = 𝑈ΛVT𝑉 = 𝑈Λ

**

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

* *

*
*

*

*
*

𝑋1

𝑋2

𝑍1

𝑍2



26

𝑈

Λ

PCA and Singular Values Decomposition (4/5)

We can project 𝑋 in a lower space selecting 𝑘 < 𝑟 ≤ 𝑝 components

𝑋 = 𝑈ΛVT

VT

𝑋 𝑈

Λ

= 𝑍 =

𝑍 = 𝑋Φ = 𝑈ΛVT𝑉 = 𝑈Λ
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PCA and Singular Values Decomposition (5/5)

We can project 𝑋 in a lower space selecting 𝑘 < 𝑟 ≤ 𝑝 components

𝑋 = 𝑈ΛVT 𝑍 = 𝑋Φ = 𝑈ΛVT𝑉 = 𝑈Λ

𝑋1

𝑋2

𝑍1

𝑍2

*

*

** *
**

*
*

****

*

*

***

*
**

*

**
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Proportion of Variance Explained (1/2)

The total variance present in a data set (assuming that the variables have 

been centered to have mean zero) is defined as 

the variance explained by the 𝑘𝑡ℎ principal component is:  

It can be shown that

෍

𝑗=1

𝑝

𝑉𝑎𝑟 𝑋𝑗 =෍

𝑗=1

𝑝
1

𝑁
෍

𝑛=1

𝑁

𝑋𝑛𝑗
2

𝑉𝑎𝑟 𝑍𝑘 =
1

𝑁
෍

𝑛=1

𝑁

𝑍𝑛𝑘
2

෍

𝑗=1

𝑝

𝑉𝑎𝑟 𝑋𝑗 = ෍

𝑘=1

𝑀

𝑉𝑎𝑟 𝑍𝑘 , 𝑤𝑖𝑡ℎ 𝑀 = min(𝑁 − 1, 𝑝)
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Proportion of Variance Explained (2/2)

Proportion of Variance Explained (PVE) of the 𝑘𝑡ℎ principal component

𝑃𝑉𝐸𝑘 =
𝑉𝑎𝑟 𝑍𝑘

σ
𝑗=1
𝑝

𝑉𝑎𝑟(𝑋𝑗)
=

σ𝑛=1
𝑁 𝑍𝑛𝑘

2

σ
𝑗=1
𝑝 σ𝑛=1

𝑁 𝑋𝑛𝑗
2

Sometimes it is plotted 

in its cumulative form.
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PCA and Hyperplanes

The first 𝑘𝑡ℎ principal components 𝜙1… 𝜙𝑘 define the 𝑘-dimensional 

hyperplane which is closest, in the Euclidean sense, to the 𝑁 observations
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Dimensionality Reduction Uses

Dimensionality reduction can be used with several aims:

• Eliminate irrelevant features or reduce noise

• Remove features which are highly correlated

• Allow data to be more easily visualized

• Avoid curse of dimensionality by projecting a in low dimensionality subspace

Uses which you might think about immediately

• Feature projection before regression -> Principal Component Regression

• Feature projection for 2D/3D visualization -> Clusters preview

• Feature projection before KNN classification

• Feature projection before k-means clustering
Other uses are related to its 

geometrical meaning  …


