

Marine Robotics

Unmanned Autonomous Vehicles in Air Land and Sea

Politecnico Milano – June 2016

BORA

Alfredo Martins

INESC TEC / ISEP Portugal alfredo.martins@inesctec.pt

Tools

MOOS

Mission Oriented Operating Suite

- Developed by P. Newman at MIT for marine applications
- Centralized communications (MOOSDB)
- 2 repositories (Oxford and MIT)
- Several applications for marine missions (viewers, simulation, mission control, vehicle control, navigation)
- Ready to use in marine applications
- With relative large userbase in the marine robotics community
- Object oriented (C++) classes

MOOS and MOOS IvP

MOOS

• MOOS community

- collection of MOOS applications running on a single machine with a separate process ID
- Independent processes, possibly running at different frequencies
- Communications through a MOOSDB (publish-subscriber)

MOOS example

MOOSDB

- Star topology
- each MOOS community application with a connection with a single MOOS Database
- No peer to peer communications
- All communication instigated by client
- Each client (MOOSApp) has a unique name
- A client does not need to know of the existence of others
- Network can be distributed over multiple machines

MOOS design

- Backseat design philosophy
- Separation from vehicle autonomy (mission oriented) and vehicle control

MOOS IvP Helm

- single MOOS app running process pHelmIvP
- IvP Interval Programming
- Behavior based architecture
- IvP solver multi-objective optimization to find the best action in each iteration of helm
- One to four times per second
- Only one subset of behaviors active in each time

MOOS Mission

MOOS communication architecture

MOOS comms

- Each application
 - Publishes data issue notification on named data
 - Register for notifications on named data (subscription)
 - Collect notifications on named data
- User code calls Notify() to transmit data
- User code can retrieve the list of messages at any time with Fetch()

MOOS Message content

- Data sent in string or doubles
- Packed in messages CMOOSMsg class
- String data comma separated "name = value pairs" Human readable

Variable	Meaning
Name	The name of the data
String Value	Data in string format
Double Value	Numeric double float data
Source	Name of client that sent this data to the MOOSDB
Time	Time at which the data was written
Data Type	Type of data (STRING or DOUBLE)
Message Type	Type of Message (usually NOTIFICATION)
Source Community	The community to which the source process belongs

MOOS CMOOSApp

- CMOOSApp base class for writing new applications
- It calls Iterate() repetitively (user should provide content
- OnNewMail() newly received data

Multiple vehicles (uField Toolbox)

"Shoreside" could be:

MOOS apps and terminal output

- AppCasting
 - Providing easer to see aplication terminal output
 - Optional feature
 - Prodies an aditional report published to MOOSDB
 - Ease of viewing multiple applications with one veiewer (AppCast Viewer)

MOOS App

MOOS App

MOOS App

MOOS App

AppCast

AppCast

AppCast

AppCast

Instituto Superior de **Engenharia** do Porto

INESCTEC

Multiple vehicles

000	pMarineViewer (MIT Vers	ion 12.10)		
File BackView GeoAttr Vehicles AppCasting MO	OS-Scope Action			
Nucle AC CM NM App AC C shoreside 1533 0 0 UnimerScript 1494 0 archie 67 0 0 UnimerScript 1494 0 prey 50 0 0 UFIGHTRETSCRIPT 1494 0 betry 68 0 0 UFIdNoreScript 10 0 charlie 68 0 0 UFIdNoreScript 10 0 david 1229 0 0 USMCView 3 0 ernie 62 0 0 USMCView 3 0			History Cart	'theat
		\vee	()	
atimerScript shoreside (Current Script Information: Elements: 30(18) Buinits: 2 Time Marpi 1 Delay Roset: 0 Delay Roset: 0 Delay Roset: 0 Delay Roset: 0 RandosVar Type Min Mas Parasetore		Å		0
Xi uniform -200 0 Yi uniform -300 -100 XI uniform -100 100 YI uniform -400 100 YI uniform -400 -200 YI uniform -400 -200 YI uniform -000 300 YI uniform -300 500 YI uniform -300 500 YI uniform -300 500 YI uniform -150 300		0	0	
#/Tot #/Loc T/Total T/Local Variable/Var 67 3401.04 600.14 00.00TTER 3 = cantar_ssign- ssign 68 3481.84 600.14 00_LOTTER 3 = cantar_ssign- ssign 69 3401.04 600.14 00_LOTTER = cantar_ssign- ssign 70 10 200.19 00.10 00_LOTTER = cantar_ssign- 71 71 13 1901.79 700.10 00_LOTTER 2 = cantar_ssign- 72 cantar_ssign- 73 71 13 1901.79 700.10 00_LOTTER 2 = cantar_ssign- rasign- 74 cantar_ssign- 79 cantar_ssign- 79	254,-45 287,-384 -59,-181 156,-296 200,-46 -102,-278 -32,-395 344,-121	0-		
Most Pocent Events (3):				
[3300.75]: Script (Ne)Init. Warp-1, DelayStart-0.0, UelayNese [1600.37]: Script (Ne)Init. Warp-1, DelayStart-0.0, DelayNese [0.01]: Script (Ne)Init. Warp-1, DelayStart-0.0, DelayNeset-0	1-0.0 1-0.0 0		S.F	
VName: archie X(m): 25.8 Lat 42	357561 Spd 1.2	Dep(m): 0.0	Time: 3999.8 PERMUTE-NOV	DEPLOY
VType: kayak Y(m): -93.9 Lon: -71.	067109 Hdg: 163.3	Age(s): 1.80	Warp: 4	RETURN
Variable: CONTACT_INFO Tm: Va	lue:			

20 Unmanned Autonomous Vehicles in Air, Land and Sea | Polit. Milano 2016

MOOS multiple communities

Mission control and monitoring: pMarineViewer

pMarineViewer typical use

MOOS source tree

Marine Robotics Simulation

Marine robotic systems simulation

- Detailed dynamic simulation
 - - CFD, (panel methods) WAMIT, Ansys, Fluent
- Generic system simulation
 - MATLAB/Simulink (MSS toolbox, other matlab tooboxes)
- Robotics Simulators
 - UWSim
 - MORSE / Blender
 - Gazebo

Marine Systems Simulator (MSS)

Instituto Superior de **Engenharia** do Porto

- Matlab/Simulink toolbox developed at NTNU
- Components
 - MSS GNC guidance, navigation and control library (the most useful component)
 - MSS HYDRO reads info from potential theory programs generating data for Matlab simulation (requires ShipX or WAMIT license)
 - MSS FDI standalone toolbox for identification of radiation-force models and fluid memory effects (seakeeping theory)

🚰 Simulink Library Browser				-	_		×
🗧 🂠 Enter search term 🗸 🗞 👻 🐯	▼ 🛅 🕒	?					
 Control Autopilots 		• • • • • • • • • • • • • • • • • • •	Control Models	Environment Navigation	Example	es i	Guidance

www.marinecontrol.org

- MSS GNC Simulink Library
 - Controllers
 - Wave and wind generation
 - Guidance blocks
 - Vehicle models and utilities
 - Observers and navigation filters

[1] T. Perez et al, "An Overview of Marine Systems Simulator (MSS): A Simulink Toolbox for Marine Control Systems", Modeling, identification and Control 27.4, pp 259-275, 2006

[™]Unmanned Autonomous Vehicles in Air, Land and Sea | Polit. Milano 2016

Other toolboxes: Aerospace Blockset

- Simulink blockset for aerospace applications (Mathworks)
- Provides useful models and block utilities for simulation of vehicle motion also usable in marine environment

JII INESCTEC

Instituto Superior de **Engenharia** do Porto

http://www.mathworks.com/products/aeroblks/

Other toolboxes:Peter Corke's Robotics and Machine Vision Toolboxes

- Robotics toolboxes developed by Prof. Peter Corke from QUT
- Robotics toolbox
 - Coordinate conversion utilities
 - Planning and localization tools for mainly for manipulator and *ground* vehicles
- Machine vision toolbox
 - Useful toolbox in computer vision
 - Implements common tools with the standard Matlab Image Processing Toolbox and also additional functions
- Useful companion to the book: Robotics, Vision and Control

Instituto Superior de **Engenharia** do Porto

http://www.petercorke.com/Toolboxes.html

Robotic Simulators

Instituto Superior de **Engenharia** do Porto

JI INESCTEC

- Generic simulators for robotics development
- Sensors and environment simulation
- From high detail in physical dynamic simulations to basic simple kinematic models
- Some allow hardware in the loop simulation
- Interfaces to common robotics middleware
- Examples
 - USARSIM
 - Player/Stage
 - Webots
 - Gazebo
 - MORSE

Simulators for underwater robotics

- Few attention has been dedicated to the underwater or marine environment
- Marine robotic sensor models such as sonars are in general not developed
- Some simulators
 - Gazebo
 - V-REP
 - MORSE/Blender
 - UWSim

Gazebo

- 3D simulator
- Recent developments from DARPA robotics challenge
- Linux environment
- Modular architecture Google protobufs for communications between modules)
- 3D simulation with OGRE3D
- Simulator independent from visualization
- Simulation description in a definition file: SDF (Simulation Definition File)
 - robots
 - environment
- Multiple interfaces
 - plugins (C++ code making the interface and shared linking)
 - ROS (plugins ROS)

gazebosim.org

Gazebo

- gazebo server
 - communication management
 - controls physics simulation loop
 - generates sensor readings
- gazebo client
 - user graphic interface

- 3D Simulation of indoor and outdoor environments;
- Provides several robots, sensors and actuators;
- Support different middlewares used in robotics (ROS, Sockets, MOOS and YARP);
- The rendering is based on Blender Game Engine;
- Realistic gathered data is possible through addition of gaussian noise to sensors outputs
- Licensed under a permissive BSD license;
- Considerable community
- Good documentation tutorials, code examples, reusable snippets, etc.

UWSim

- Underwater simulator developed by IRS Lab of Jaume-I University, Madrid
- Developed under the RAUVI and TRIDENT projects
- Uses OSG (Open Scene Graph)
- Simulates underwater environments
- Configurable environment
- Multiple robot
- Underwater manipulators
- Common underwater sensors
 - Camera
 - Pressure
 - DVL
 - GPS
 - Multibeam sonar
 - Structured light projector
 - ...
- ROS interface

http://www.irs.uji.es/uwsim/ http://www.irs.uji.es/uwsim/wiki/

UWSim

Architecture

UWSim architecture, from [1]

[1] M. Prats, et al, "An open source tool for simulation and supervision of underwater intervention missions", IEEE IROS Conference, 2012

UWSim

UWSim Practical Introduction

Interacting with UWSIM

- Start a roscore
 - >> roscore
- Start UWSim
 - >> rosrun uwsim uwsim

You should get something like this

Interacting with UWSIM

- Check the list of ROS topics available
 - >> rostopic list
- Set a new Vehicle Position (x=2, y=0, z=3, roll, pitch, yaw=0)
 - >> rosrun uwsim setVehiclePosition /dataNavigator 2 0 3 0 0 0

You should get something like this

Task I – Simulation Vehicle Dynamics

• Start a roslaunch

- >> cd /catkin_ws
- >> source setup.bash
- >> roslaunch underwater_vehicle_dynamics

UWSim_g500_dynamics.launch

Use the control by keyboard

Use the keys to control:

Task II- ROS interface

- Step 1. Compile a ROS node to send reference commands to G500 thrusters
- Step 2. Implement guidance controllers for the vehicle (ex. Similar to the ones previously tested in Matlab/Simulink)