

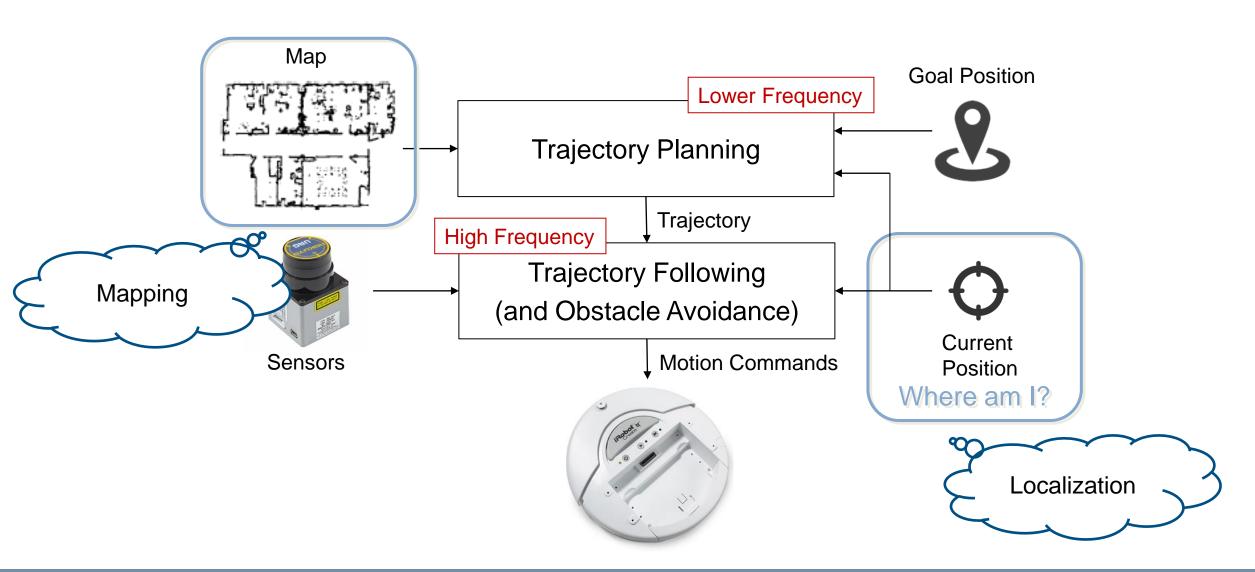
Robotics

Simultaneous Localization and Mapping

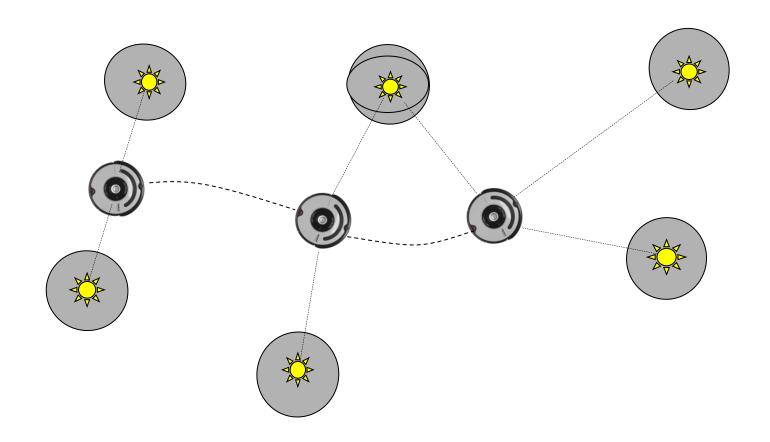
Matteo Matteucci matteo.matteucci @polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

A Simplified Sense-Plan-Act Architecture

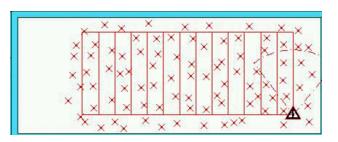


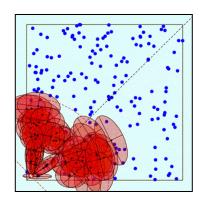
Mapping with Known Poses

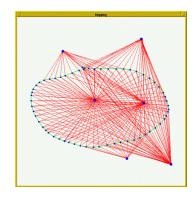


Representations

Landmark-based

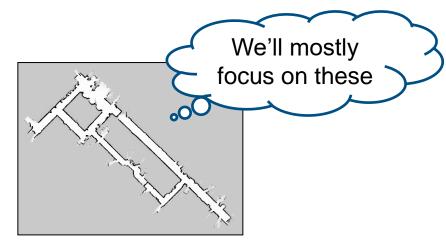






[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...]

Grid maps or scans



[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & al., 00; Thrun, 00; Arras, 99; Haehnel, 01;...]

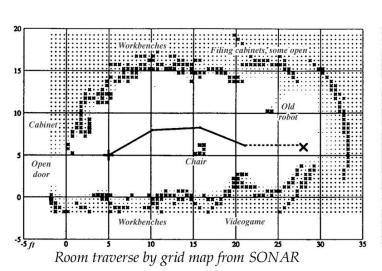
Occupancy from Sonar Return (the origins)

The most simple occupancy model used sonars

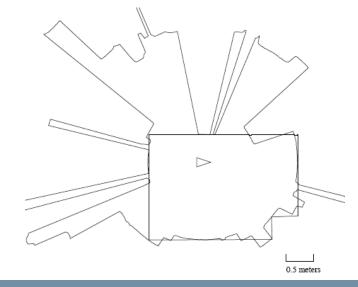
- A 2D Gaussian for information about occupancy
- Another 2D Gaussian for free space

Sonar sensors present several issues

- A wide sonar cone creates noisy maps
- Specular (multi-path) reflections generates unrealistic measurements



Moravec 1984



2D Occupancy Grids

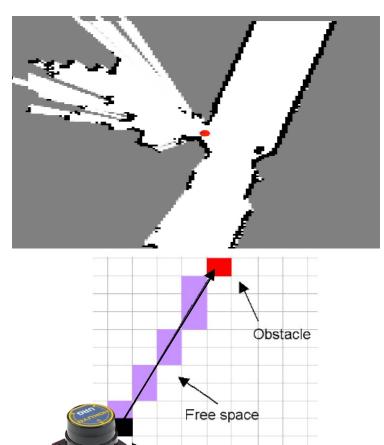
A simple 2D representation for maps

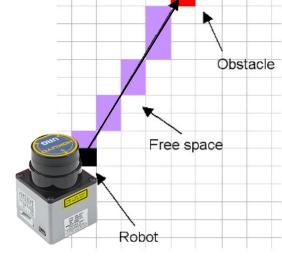
- Each cell is assumed independent
- Probability of a cell of being occupied estimated using Bayes theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

Maps the environment as an array of cells

- Usual cell size 5 to 50cm
- Each cells holds the probability of the cell to be occupied
- Useful to combine different sensor scans and different sensor modalities





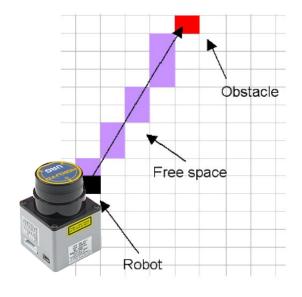
Occupancy Grid Cell Update

Let occ(i,j) mean cell C_{ij} is occupied, we have

- Probability: P(occ(i, j)) has range [0, 1]
- Odds: o(occ(i, j)) has range $[0, \infty]$

$$o(occ(i,j)) = P(occ(i,j))/P(\neg occ(i,j))$$

• Log odds: $\log o(occ(i, j))$ has range $[-\infty, \infty]$



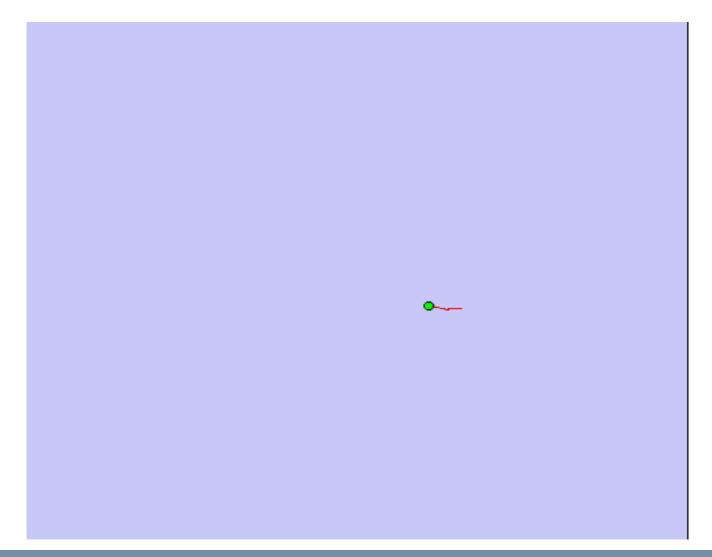
Each cell C_{ij} holds the value $\log o(occ(i,j))$, $C_{ij} = 0$ corresponds to P(occ(i,j)) = 0.5

Cells are updated recursively by applying the Bayes theorem

- A = occ(i, j)
- B = measure(i, j)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Mapping with Raw Odometry (assuming known poses)



Scan Matching

Correct odometry by maximizing the likelihood of pose *t* based on the estimates of pose and map at time *t-1*.

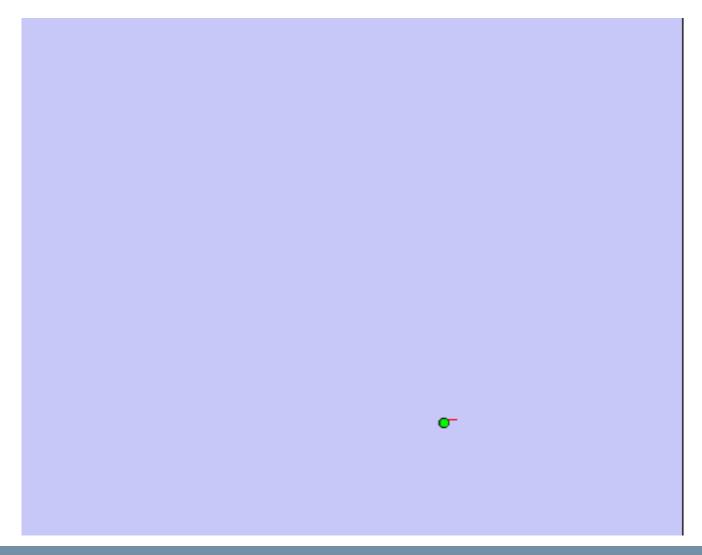
$$\hat{x}_t = \arg\max_{x_t} \left\{ p(z_t \mid x_t, \hat{m}^{[t-1]}) \cdot p(x_t \mid u_{t-1}, \hat{x}_{t-1}) \right\}$$
current measurement
robot motion

map constructed so far

 $\hat{m}^{[t]}$ Then compute the map $\hat{m}^{[t]}$ according to "mapping with known poses" based on the new pose and current observations.

Iterate alternating the two steps of localization and mapping ...

Scan Matching Example



Scan Matching

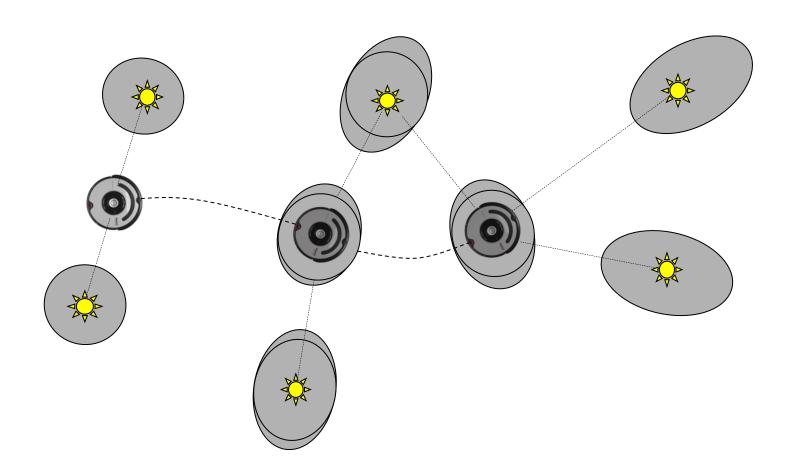
Correct odometry by maximizing the likelihood of pose *t* based on the estimates of pose and map at time *t-1*.

 $\hat{x}_{t} = \arg\max_{x_{t}} \left\{ p(z_{t} \mid x_{t}, \hat{m}^{[t-1]}) \cdot p(x_{t} \mid u_{t-1}, \hat{x}_{t-1}) \right\}$ Current measure of the uncertainty in the process motion

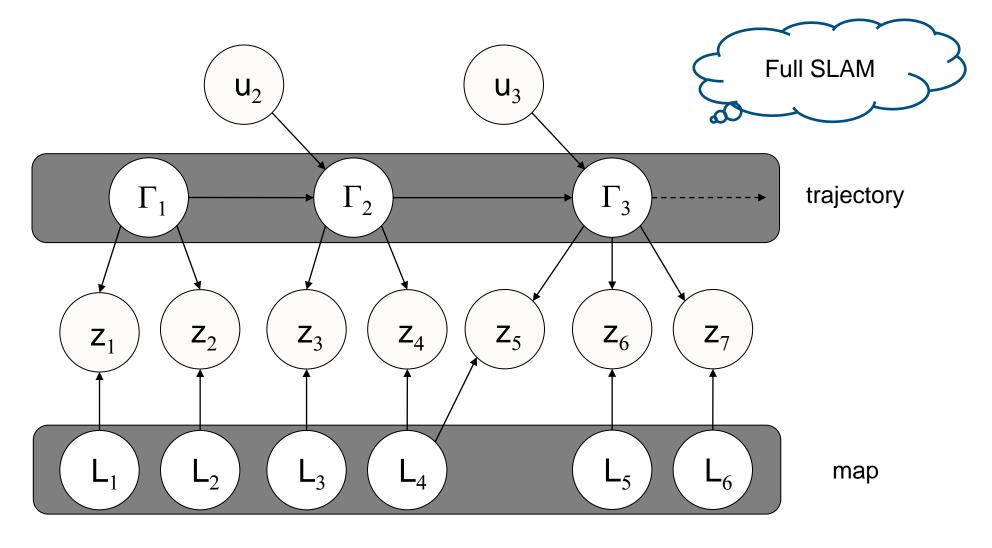
The compute the map $\hat{m}^{[t]}$ according to "mapping with known poses" based on the new pose and current observations.

Iterate alternating the two steps of localization and mapping ...

Simultaneous Localization and Mapping

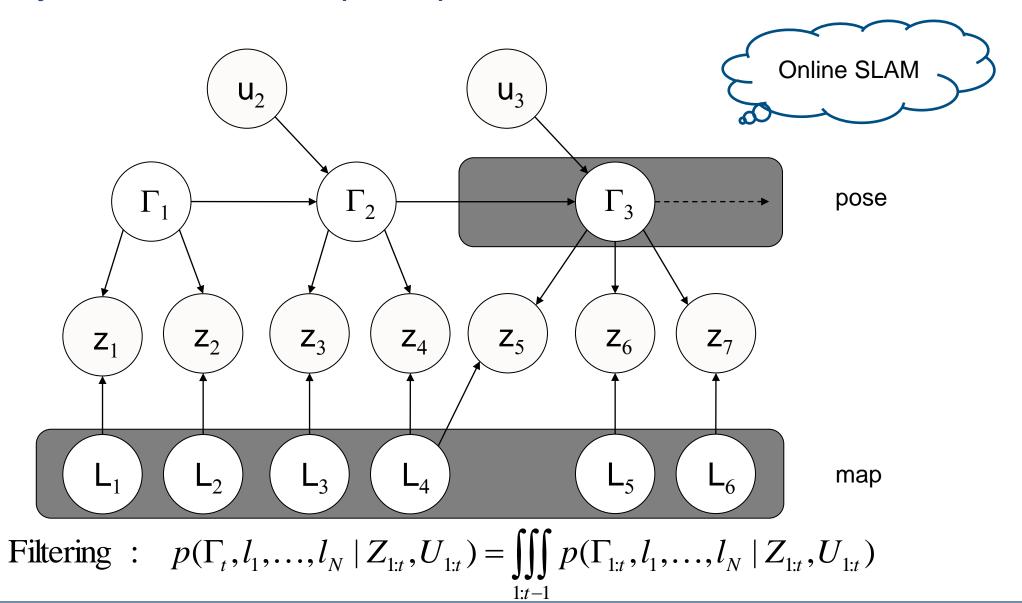


Dynamic Bayesian Networks and (Full) SLAM



Smoothing: $p(\Gamma_{1:t}, l_1, ..., l_N | Z_{1:t}, U_{1:t})$

Dynamic Bayesian Networks and (Online) SLAM



SLAM: Simultaneous Localization and Mapping

Full SLAM:
$$p(x_{1:t}, m | z_{1:t}, u_{1:t})$$

Simultaneous estimate of path and map

Integrals computed one at the time

Online SLAM:
$$p(x_t, m \mid z_{1:t}, u_{1:t}) = \int \int ... \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_1 dx_2 ... dx_{t-1}$$

Simultaneous estimate of most recent pose and map

SLAM: Simultaneous Localization and Mapping

Full SLAM: $p(x_{1:t}, m | z_{1:t}, u_{1:t})$

Two famous examples!

Online SLAM:

Extended Kalman Filter (EKF) SLAM

- Uses a linearized Gaussian probability distribution
- Solves the Online SLAM problem

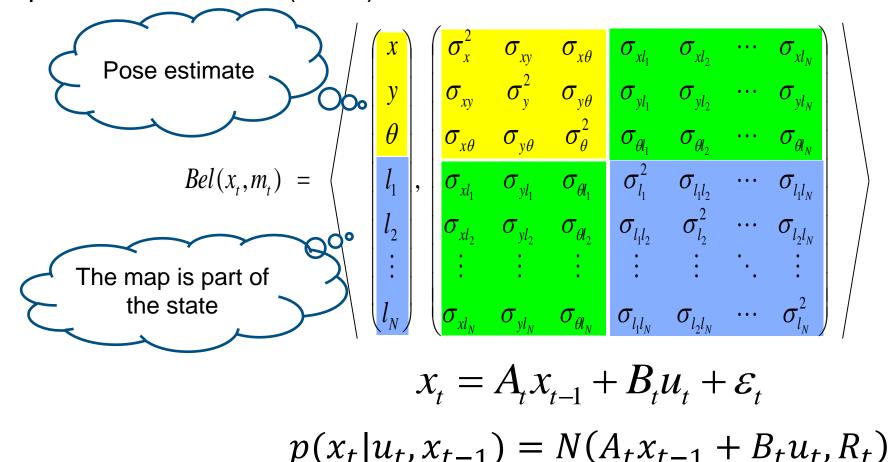
FastSLAM

- Uses a sampled particle filter distribution model
- Solves the Full SLAM problem

 \mathcal{C}_{t-1}

(E)KF-SLAM

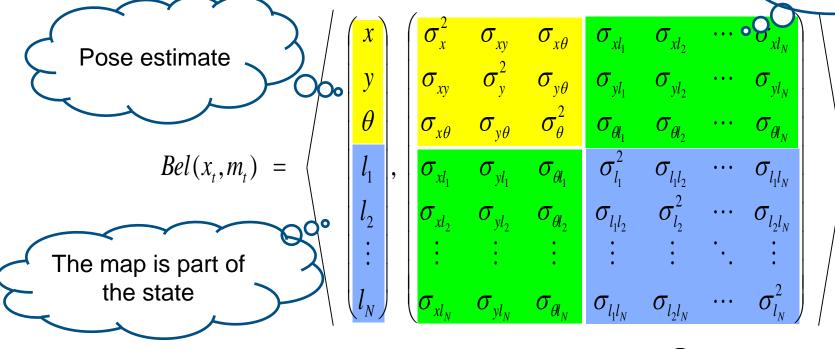
Map with N landmarks:(3+2N)-dimensional Gaussian



(E)KF-SLAM

Map with N landmarks:(3+2N)-dimensional Gaussian

Pose and map features correlate (and mesurements correct both)



$$z_{t} = C_{t}x_{t} + \delta_{t}$$
$$p(z_{t}|x_{t}) = N(C_{t}x_{t}, Q_{t})$$

Bayes Filter: The Algorithm

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

Algorithm Bayes_filter(Bel(x), d):

If *d* is a perceptual data item *z* then

For all
$$x$$
 do $Bel'(x) = P(z \mid x)Bel(x)$

correction

Else if d is an action data item u then

For all x do

prediction

$$Bel'(x) = \int P(x \mid u, x') Bel(x') dx'$$

Return Bel'(x)

Kalman Filter Algorithm

Algorithm Kalman_filter(μ_{t-1} , Σ_{t-1} , u_t , z_t):

Prediction:
$$\overline{\mu_t} = A_t \mu_{t-1} + B_t \mu_t$$
$$\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$$

Correction:
$$K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$$

$$\mu_t = \overline{\mu}_t + K_t (z_t - C_t \overline{\mu}_t)$$

$$\Sigma_t = (I - K_t C_t) \overline{\Sigma}_t$$

$$Bel(x_t, m_t) =$$

Return μ_t , Σ_t

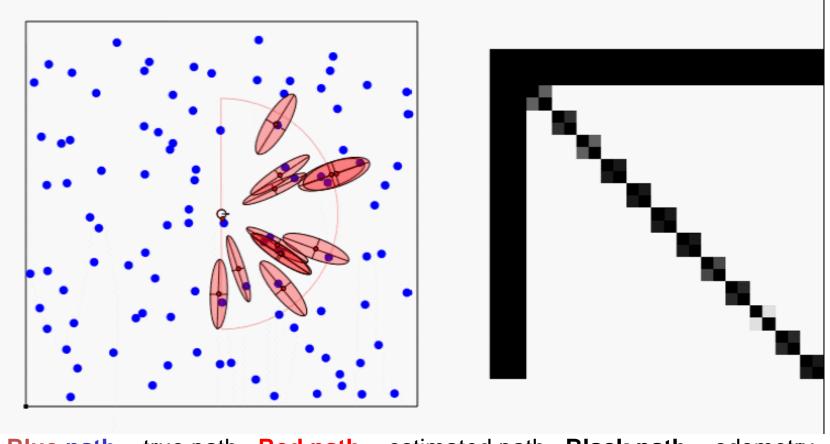
standard EKF ... but the state dimention increases!!

$$egin{pmatrix} x \ y \ heta \ l_1 \ l_2 \ dots \ l_N \end{pmatrix}$$

Not much different from

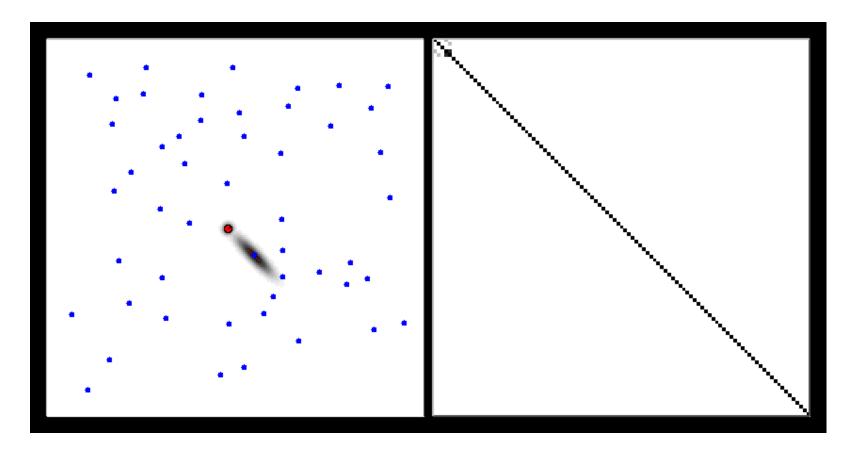
Classical Solution – The EKF

Approximate the SLAM posterior with a high-dimensional Gaussian



Blue path = true path Red path = estimated path Black path = odometry

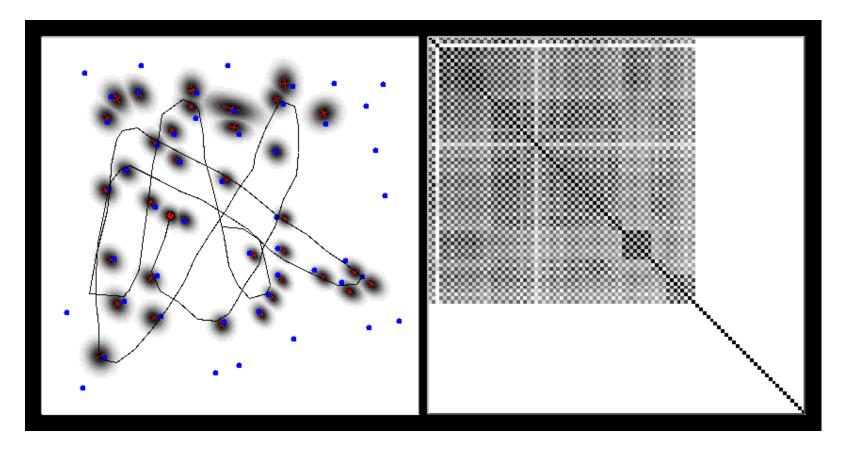
EKF-SLAM



Мар

Correlation matrix

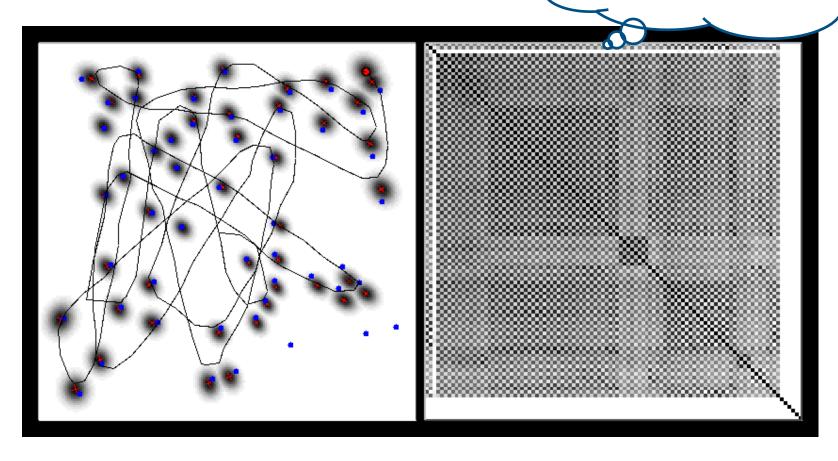
EKF-SLAM



Мар

Correlation matrix

Landmark positions uncorrelated with the robot orientation ...



Map

Correlation matrix

Properties of KF-SLAM (Linear Case)

Theorem: The determinant of any sub-matrix of the map covariance matrix decreases monotonically as successive observations are made.

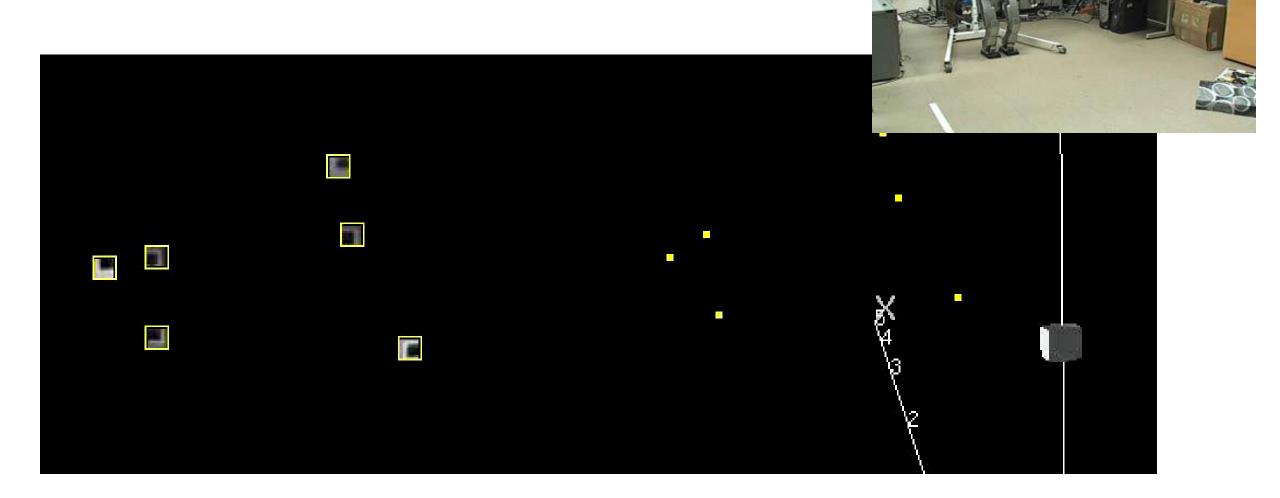
Theorem: In the limit the landmark estimates become fully correlated

[Dissanayake et al., 2001]

Are we happy about this?

- Quadratic in the number of landmarks: O(n²)
- Convergence results for the linear case
- Can diverge if nonlinearities are large!
- Have been applied successfully in large-scale environments.
- Approximations reduce the computational complexity.

Monocular SLAM Origins ...



Monocular SLAM Origins ...

Real-Time Camera Tracking in Unknown Scenes

Larger size environments ...

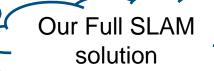
Beyond EKF-SLAM

EKF-SLAM works pretty well but ...

- EKF-SLAM employs linearized models of nonlinear motion and observation models and so inherits many caveats.
- Computational effort is demand because computation grows quadratically with the number of landmarks.

Possible solutions

- Local submaps [Leonard & al 99, Bosse & al 02, Newman & al 03]
- Sparse links (correlations) [Lu & Milios 97, Guivant & Nebot 01]
- Sparse extended information filters [Frese et al. 01, Thrun et al. 02]
- Rao-Blackwellisation (FastSLAM) [Murphy 99, Montemerlo et al. 02, ...]
 - Represents nonlinear process and non-Gaussian uncertainty
 - Rao-Blackwellized method reduces computation



The FastSLAM Idea (Full SLAM)

In the general case we have

$$p(x_t, m \mid z_t) \neq P(x_t \mid z_t) P(m \mid z_t)$$

However if we consider the full trajectory X_t rather than the single pose x_t

$$p(X_{t}, m | z_{t}) = P(X_{t} | z_{t})P(m | X_{t}, z_{t})$$

In FastSLAM, the trajectory X_t is represented by particles $X_t(i)$ while the map is represented by a factorization called Rao-Blackwellized Filter

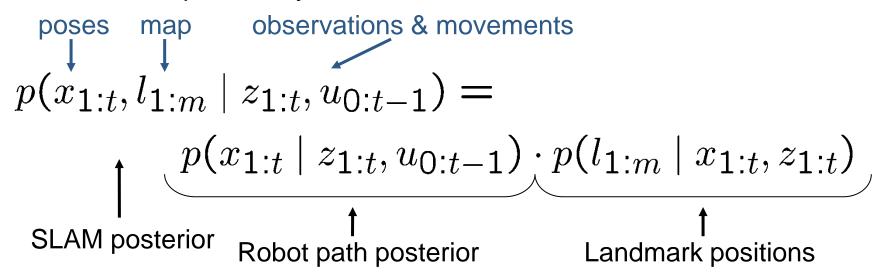
- $P(X_t|z_t)$ through particles

•
$$P(X_t|z_t)$$
 through particles
• $P(m|X_t^{(i)},z_t)$ using an EKF
$$P(m|X_t^{(i)},z_t) = \prod_j^M P(m_j|X_t^{(i)},z_t)$$
map poses
$$|A_t| = \prod_j^M P(m_j|X_t^{(i)},z_t)$$

FastSLAM Formulation

Decouple map of features from poses ...

- Each particle represents a robot trajectory
- Feature measurements are correlated thought the robot trajectory
- If the robot trajectory is known all of the features would be uncorrelated
- Treat each pose particle as if it is the true trajectory, processing all of the feature measurements independently



Factored Posterior: Rao-Blackwellization

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

Robot path posterior (localization problem)

Conditionally independent landmark positions

Dimension of state space is reduced by factorization making particle filtering possible

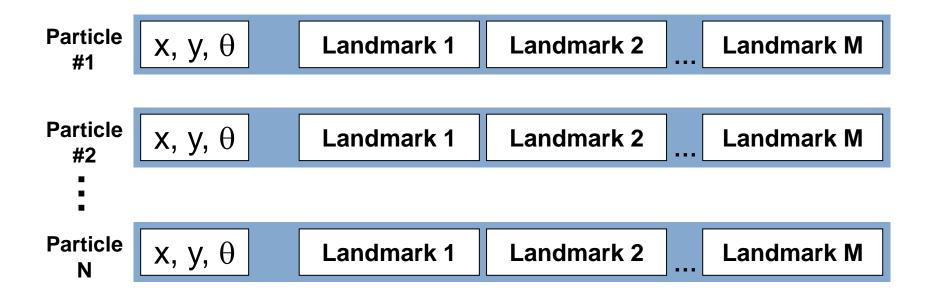
$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) =$$

$$p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

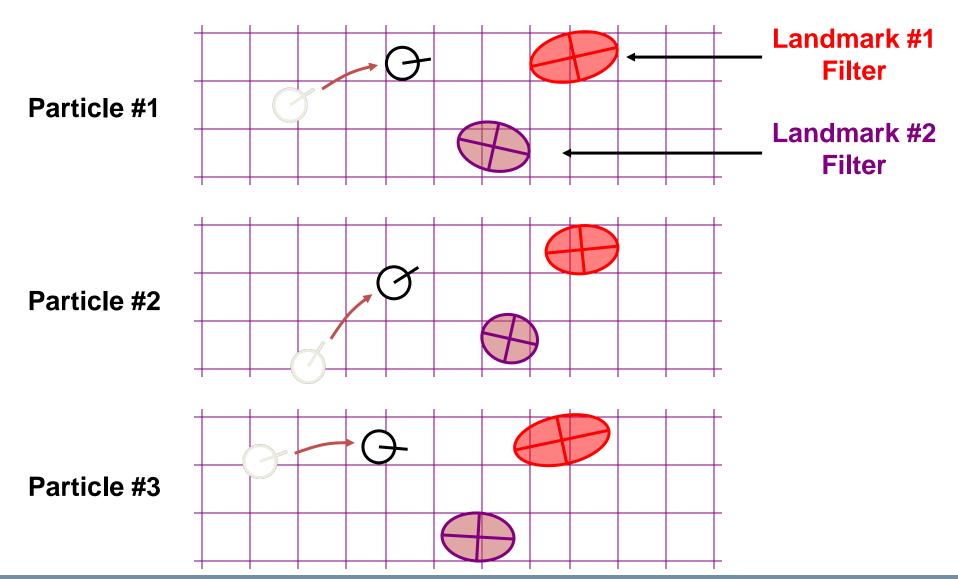
FastSLAM in Practice

Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]

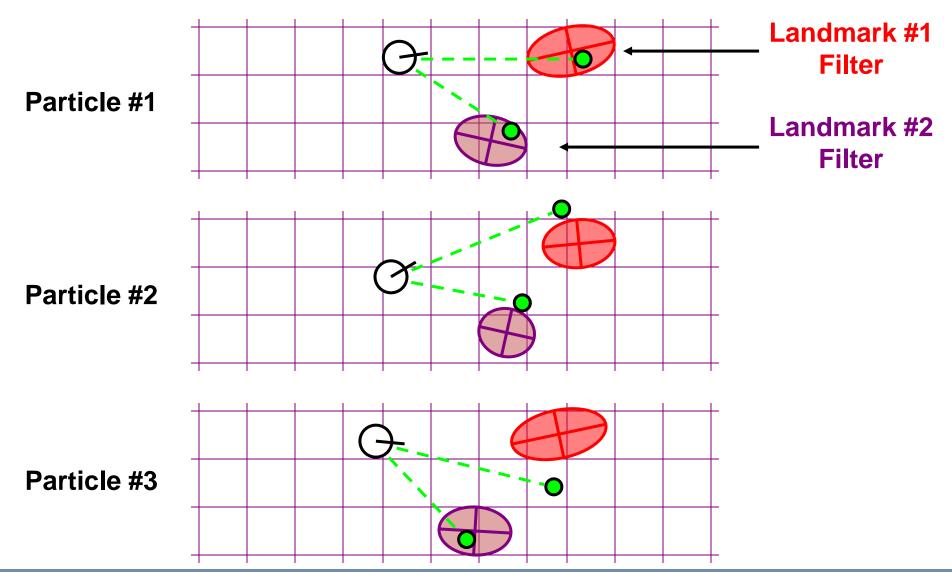
- Each particle is a trajectory (last pose + reference to previous)
- Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs



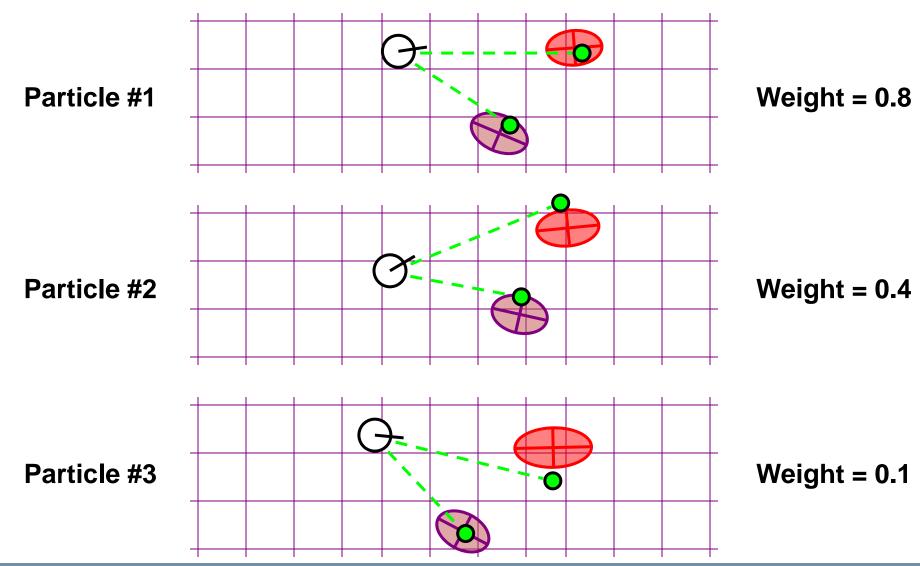
FastSLAM – Action Update



FastSLAM – Sensor Update



FastSLAM – Sensor Update



FastSLAM Complexity

Update robot particles based on control u_{t-1}

Constant time

Incorporate observation z, into Kalman filters

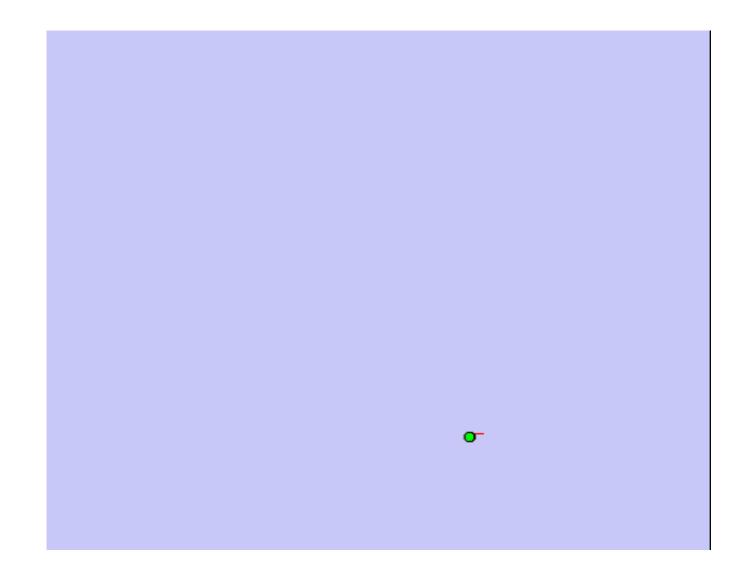
 $O(N \cdot log(M))$ Log time per particle

Resample particle set
$$O(N \cdot log(M))$$
 Log time per particle

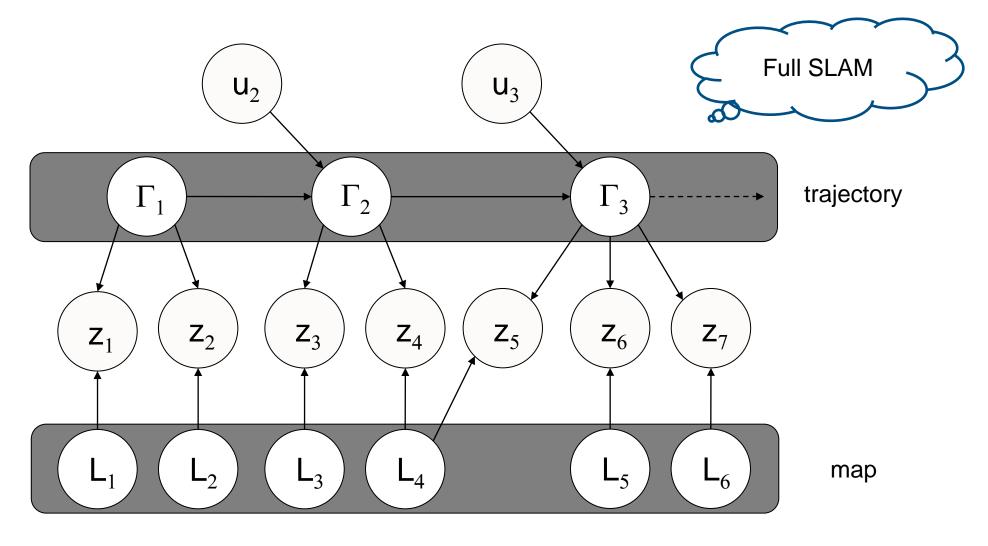
```
O(N \cdot log(M))
Log time per particle
```

N = *Number* of particles *M* = *Number* of map features

Fast-SLAM Example

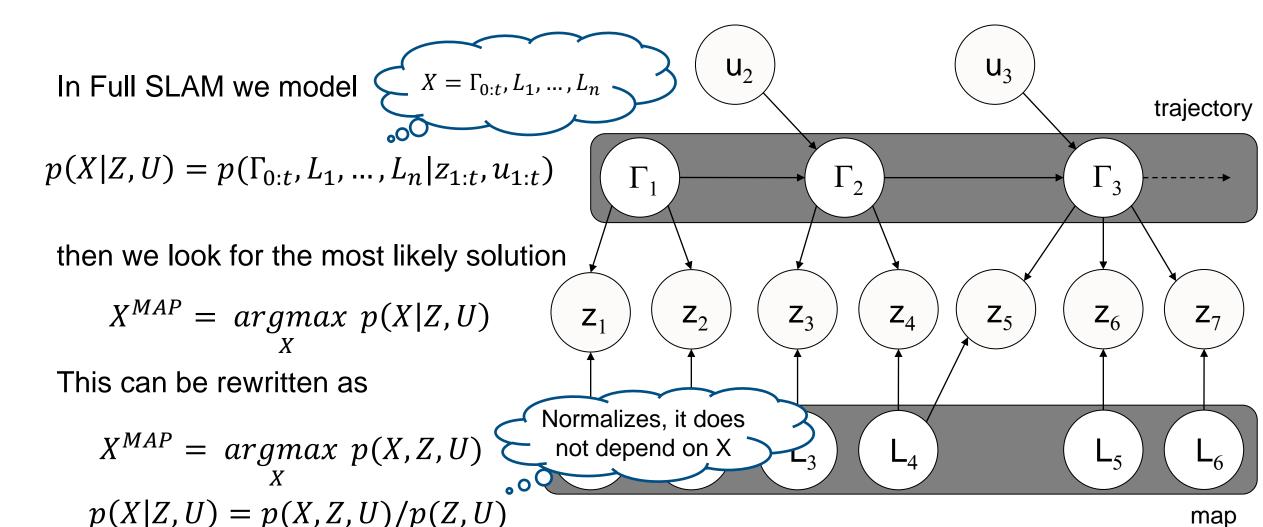


Dynamic Bayesian Networks and (Full) SLAM



Smoothing: $p(\Gamma_{1:t}, L_1, ..., L_N | Z_{1:t}, U_{1:t})$

Bayesian Networks and Maximum a Posteriori



Full Joint

Distribution

POLITECNICO MILANO 1863

42

Smoothing: $p(\Gamma_{1:t}, L_1, ..., L_N | Z_{1:t}, U_{1:t})$

$$p(X, Z, U) = p(\Gamma_{0:3}, L_1, \dots, L_6 | z_{1:7}, u_{1:7})$$

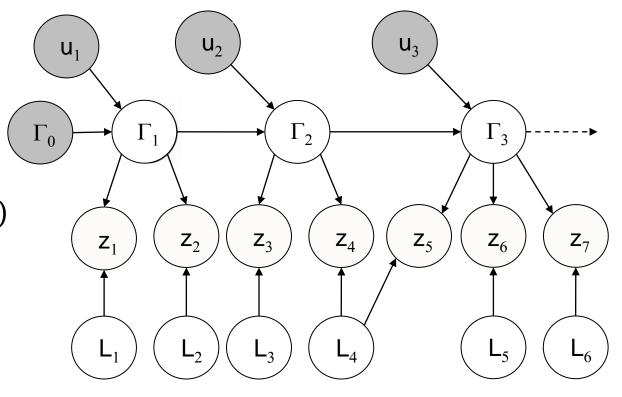
$$= p(\Gamma_{1}|\Gamma_{0}, u_{1})p(\Gamma_{2}|\Gamma_{1}, u_{1})p(\Gamma_{3}|\Gamma_{2}, u_{3})$$

$$p(Z_{1}|\Gamma_{1}, L_{1})p(L_{1})p(Z_{2}|\Gamma_{1}, L_{2})p(L_{2})$$

$$p(Z_{3}|\Gamma_{2}, L_{3})p(L_{3})p(Z_{4}|\Gamma_{2}, L_{4})p(L_{4})$$

$$p(Z_{5}|\Gamma_{3}, L_{4})p(Z_{6}|\Gamma_{3}, L_{5})p(L_{5})$$

$$p(Z_{7}|\Gamma_{3}, L_{6})p(L_{6})$$



$$= \phi(\Gamma_1, \Gamma_0, u_1)\phi(\Gamma_2, \Gamma_1, u_1)\phi(\Gamma_3, \Gamma_2, u_3)\phi(Z_1, \Gamma_1, L_1)\phi(Z_2, \Gamma_1, L_2)$$

$$\phi(Z_3, \Gamma_2, L_3)\phi(Z_4, \Gamma_2, L_4)\phi(Z_5, \Gamma_3, L_4)\phi(Z_6, \Gamma_3, L_5)\phi(Z_7, \Gamma_3, L_6)$$

$$p(X, Z, U) = p(\Gamma_{0:3}, L_1, ..., L_6 | z_{1:7}, u_{1:7})$$

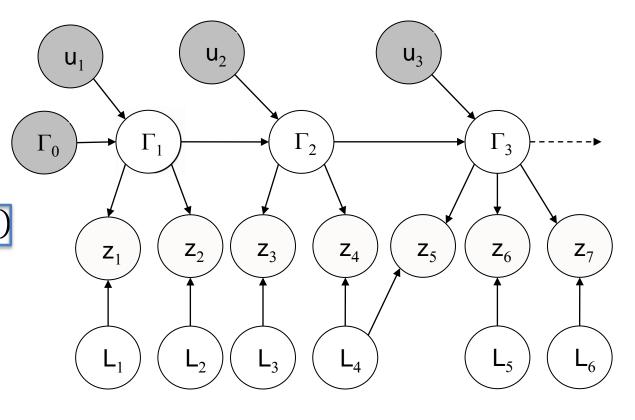
$$= p(\Gamma_{1}|\Gamma_{0}, u_{1}) p(\Gamma_{2}|\Gamma_{1}, u_{1}) p(\Gamma_{3}|\Gamma_{2}, u_{3})$$

$$p(Z_{1}|\Gamma_{1}, L_{1}) p(L_{1}) p(Z_{2}|\Gamma_{1}, L_{2}) p(L_{2})$$

$$p(Z_{3}|\Gamma_{2}, L_{3}) p(L_{3}) p(Z_{4}|\Gamma_{2}, L_{4}) p(L_{4})$$

$$p(Z_{5}|\Gamma_{3}, L_{4}) p(Z_{6}|\Gamma_{3}, L_{5}) p(L_{5})$$

$$p(Z_{7}|\Gamma_{3}, L_{6}) p(L_{6})$$



$$= \phi(\Gamma_1, \Gamma_0, u_1)\phi(\Gamma_2, \Gamma_1, u_1)\phi(\Gamma_3, \Gamma_2, u_3)\phi(Z_1, \Gamma_1, L_1)\phi(Z_2, \Gamma_1, L_2)$$

$$\phi(Z_3, \Gamma_2, L_3)\phi(Z_4, \Gamma_2, L_4)\phi(Z_5, \Gamma_3, L_4)\phi(Z_6, \Gamma_3, L_5)\phi(Z_7, \Gamma_3, L_6)$$

$$p(X,Z,U) = p(\Gamma_{0:3}, L_1, \dots, L_6 | z_{1:7}, u_{1:7})$$

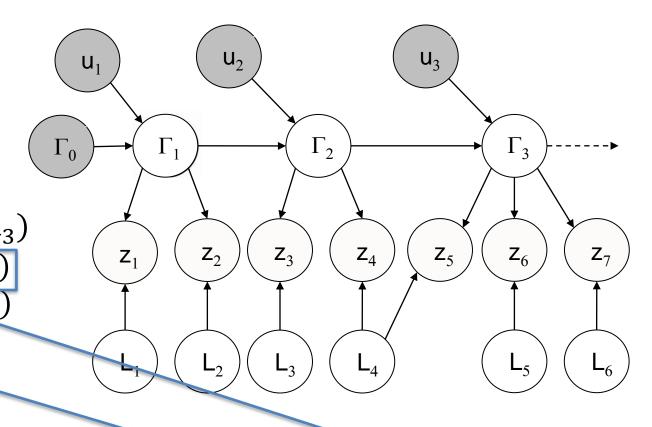
$$= p(\Gamma_{1}|\Gamma_{0}, u_{1})p(\Gamma_{2}|\Gamma_{1}, u_{1})p(\Gamma_{3}|\Gamma_{2}, u_{3})$$

$$p(Z_{1}|\Gamma_{1}, L_{1})p(L_{1})p(Z_{2}|\Gamma_{1}, L_{2})p(L_{2})$$

$$p(Z_{3}|\Gamma_{2}, L_{3})p(L_{3})p(Z_{4}|\Gamma_{2}, L_{4})p(L_{4})$$

$$p(Z_{5}|\Gamma_{3}, L_{4})p(Z_{6}|\Gamma_{3}, L_{5})p(L_{5})$$

$$p(Z_{7}|\Gamma_{3}, L_{6})p(L_{6})$$



$$= \phi(\Gamma_1, \Gamma_0, u_1)\phi(\Gamma_2, \Gamma_1, u_1)\phi(\Gamma_3, \Gamma_2, u_3)\phi(Z_1, \Gamma_1, L_1)\phi(Z_2, \Gamma_1, L_2)$$

$$\phi(Z_3, \Gamma_2, L_3)\phi(Z_4, \Gamma_2, L_4)\phi(Z_5, \Gamma_3, L_4)\phi(Z_6, \Gamma_3, L_5)\phi(Z_7, \Gamma_3, L_6)$$

$$p(X, Z, U) = p(\Gamma_{0:3}, L_1, ..., L_6 | z_{1:7}, u_{1:7})$$

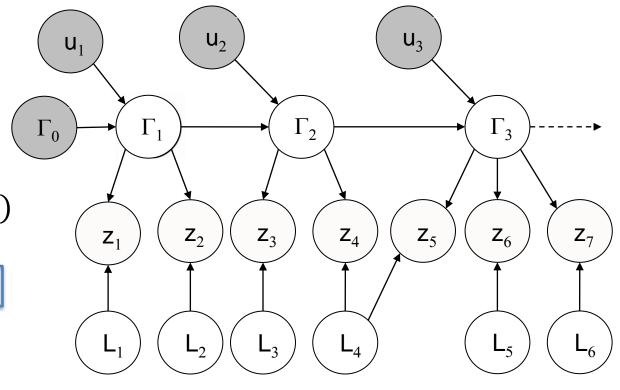
$$= p(\Gamma_{1}|\Gamma_{0}, u_{1})p(\Gamma_{2}|\Gamma_{1}, u_{1})p(\Gamma_{3}|\Gamma_{2}, u_{3})$$

$$p(Z_{1}|\Gamma_{1}, L_{1})p(L_{1})p(Z_{2}|\Gamma_{1}, L_{2})p(L_{2})$$

$$p(Z_{3}|\Gamma_{2}, L_{3})p(L_{3})p(Z_{4}|\Gamma_{2}, L_{4})p(L_{4})$$

$$p(Z_{5}|\Gamma_{3}, L_{4})p(Z_{6}|\Gamma_{3}, L_{5})p(L_{5})$$

$$p(Z_{7}|\Gamma_{3}, L_{6})p(L_{6})$$



$$= \phi(\Gamma_1, \Gamma_0, u_1)\phi(\Gamma_2, \Gamma_1, u_1)\phi(\Gamma_3, \Gamma_2, u_3)\phi(Z_1, \Gamma_1, L_1)\phi(Z_2, \Gamma_1, L_2)$$

$$\phi(Z_3, \Gamma_2, L_3)\phi(Z_4, \Gamma_2, L_4)\phi(Z_5, \Gamma_3, L_4)\phi(Z_6, \Gamma_3, L_5)\phi(Z_7, \Gamma_3, L_6)$$

$$p(X,Z,U) = p(\Gamma_{0:3}, L_1, \dots, L_6 | z_{1:7}, u_{1:7})$$

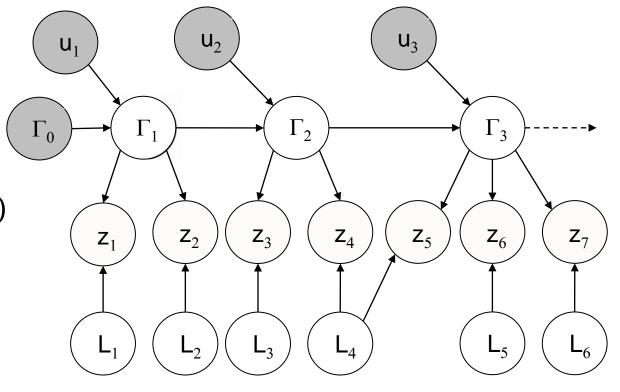
$$= p(\Gamma_{1}|\Gamma_{0}, u_{1})p(\Gamma_{2}|\Gamma_{1}, u_{1})p(\Gamma_{3}|\Gamma_{2}, u_{3})$$

$$p(Z_{1}|\Gamma_{1}, L_{1})p(L_{1})p(Z_{2}|\Gamma_{1}, L_{2})p(L_{2})$$

$$p(Z_{3}|\Gamma_{2}, L_{3})p(L_{3})p(Z_{4}|\Gamma_{2}, L_{4})p(L_{4})$$

$$p(Z_{5}|\Gamma_{3}, L_{4})p(Z_{6}|\Gamma_{3}, L_{5})p(L_{5})$$

$$p(Z_{7}|\Gamma_{3}, L_{6})p(L_{6})$$



$$= \phi(\Gamma_1, \Gamma_0, u_1)\phi(\Gamma_2, \Gamma_1, u_1)\phi(\Gamma_3, \Gamma_2, u_3)\phi(Z_1, \Gamma_1, L_1)\phi(Z_2, \Gamma_1, L_2)$$

$$\phi(Z_3, \Gamma_2, L_3)\phi(Z_4, \Gamma_2, L_4)\phi(Z_5, \Gamma_3, L_4)\phi(Z_6, \Gamma_3, L_5)\phi(Z_7, \Gamma_3, L_6)$$

$$p(X,Z,U) = p(\Gamma_{0:3}, L_{1}, ..., L_{6}|Z_{1:7}, u_{1:7})$$

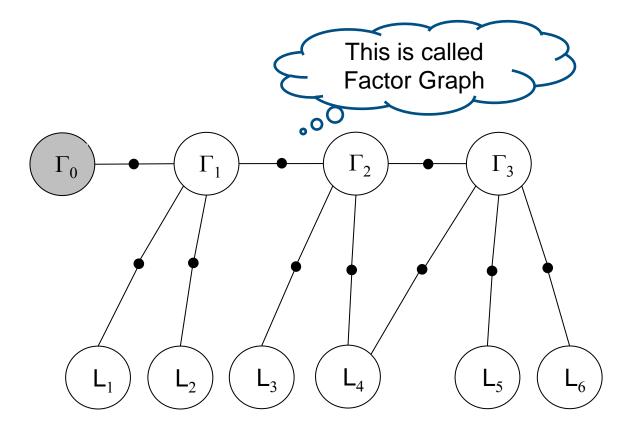
$$= p(\Gamma_{1}|\Gamma_{0}, u_{1})p(\Gamma_{2}|\Gamma_{1}, u_{1})p(\Gamma_{3}|\Gamma_{2}, u_{3})$$

$$p(Z_{1}|\Gamma_{1}, L_{1})p(L_{1})p(Z_{2}|\Gamma_{1}, L_{2})p(L_{2})$$

$$p(Z_{3}|\Gamma_{2}, L_{3})p(L_{3})p(Z_{4}|\Gamma_{2}, L_{4})p(L_{4})$$

$$p(Z_{5}|\Gamma_{3}, L_{4})p(Z_{6}|\Gamma_{3}, L_{5})p(L_{5})$$

$$p(Z_{7}|\Gamma_{3}, L_{6})p(L_{6})$$



$$= \phi(\Gamma_1, \Gamma_0, u_1)\phi(\Gamma_2, \Gamma_1, u_1)\phi(\Gamma_3, \Gamma_2, u_3)\phi(Z_1, \Gamma_1, L_1)\phi(Z_2, \Gamma_1, L_2)$$

$$\phi(Z_3, \Gamma_2, L_3)\phi(Z_4, \Gamma_2, L_4)\phi(Z_5, \Gamma_3, L_4)\phi(Z_6, \Gamma_3, L_5)\phi(Z_7, \Gamma_3, L_6)$$

$$p(X,Z,U) = p(\Gamma_{0:3}, L_{1}, ..., L_{6}|Z_{1:7}, u_{1:7})$$

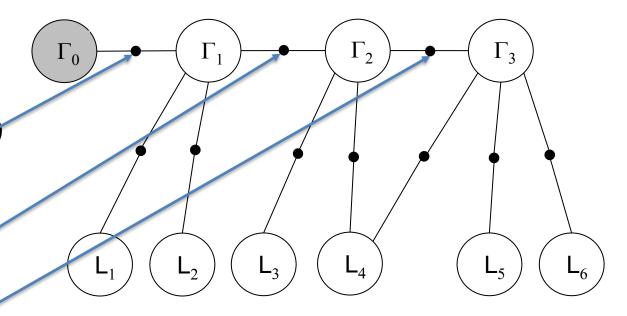
$$= p(\Gamma_{1}|\Gamma_{0}, u_{1})p(\Gamma_{2}|\Gamma_{1}, u_{1})p(\Gamma_{3}|\Gamma_{2}, u_{3})$$

$$p(Z_{1}|\Gamma_{1}, L_{1})p(L_{1})p(Z_{2}|\Gamma_{1}, L_{2})p(L_{2})$$

$$p(Z_{3}|\Gamma_{2}, L_{3})p(L_{3})p(Z_{4}|\Gamma_{2}, L_{4})p(L_{4})$$

$$p(Z_{5}|\Gamma_{3}, L_{4})p(Z_{6}|\Gamma_{3}, L_{5})p(L_{5})$$

$$p(Z_{7}|\Gamma_{3}, L_{6})p(L_{6})$$



$$= \phi(\Gamma_1, \Gamma_0, u_1) \phi(\Gamma_2, \Gamma_1, u_1) \phi(\Gamma_3, \Gamma_2, u_3) \phi(Z_1, \Gamma_1, L_1) \phi(Z_2, \Gamma_1, L_2) \phi(Z_3, \Gamma_2, L_3) \phi(Z_4, \Gamma_2, L_4) \phi(Z_5, \Gamma_3, L_4) \phi(Z_6, \Gamma_3, L_5) \phi(Z_7, \Gamma_3, L_6)$$

$$p(X,Z,U) = p(\Gamma_{0:3}, L_{1}, ..., L_{6}|Z_{1:7}, u_{1:7})$$

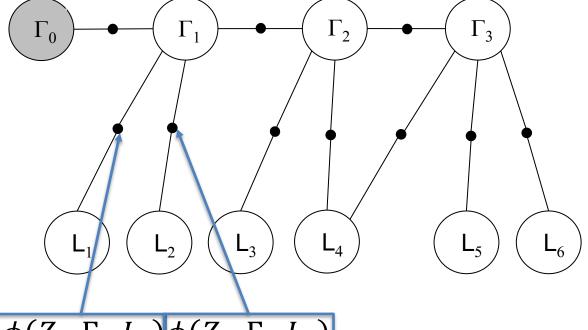
$$= p(\Gamma_{1}|\Gamma_{0}, u_{1})p(\Gamma_{2}|\Gamma_{1}, u_{1})p(\Gamma_{3}|\Gamma_{2}, u_{3})$$

$$p(Z_{1}|\Gamma_{1}, L_{1})p(L_{1})p(Z_{2}|\Gamma_{1}, L_{2})p(L_{2})$$

$$p(Z_{3}|\Gamma_{2}, L_{3})p(L_{3})p(Z_{4}|\Gamma_{2}, L_{4})p(L_{4})$$

$$p(Z_{5}|\Gamma_{3}, L_{4})p(Z_{6}|\Gamma_{3}, L_{5})p(L_{5})$$

$$p(Z_{7}|\Gamma_{3}, L_{6})p(L_{6})$$



$$= \phi(\Gamma_1, \Gamma_0, u_1)\phi(\Gamma_2, \Gamma_1, u_1)\phi(\Gamma_3, \Gamma_2, u_3)\phi(Z_1, \Gamma_1, L_1)\phi(Z_2, \Gamma_1, L_2)$$

$$\phi(Z_3, \Gamma_2, L_3)\phi(Z_4, \Gamma_2, L_4)\phi(Z_5, \Gamma_3, L_4)\phi(Z_6, \Gamma_3, L_5)\phi(Z_7, \Gamma_3, L_6)$$

$$p(X,Z,U) = p(\Gamma_{0:3}, L_{1}, ..., L_{6}|Z_{1:7}, u_{1:7})$$

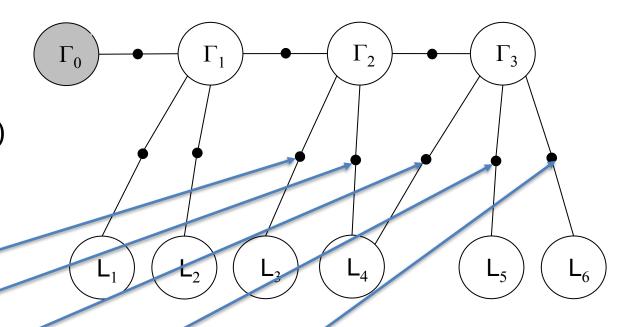
$$= p(\Gamma_{1}|\Gamma_{0}, u_{1})p(\Gamma_{2}|\Gamma_{1}, u_{1})p(\Gamma_{3}|\Gamma_{2}, u_{3})$$

$$p(Z_{1}|\Gamma_{1}, L_{1})p(L_{1})p(Z_{2}|\Gamma_{1}, L_{2})p(L_{2})$$

$$p(Z_{3}|\Gamma_{2}, L_{3})p(L_{3})p(Z_{4}|\Gamma_{2}, L_{4})p(L_{4})$$

$$p(Z_{5}|\Gamma_{3}, L_{4})p(Z_{6}|\Gamma_{3}, L_{5})p(L_{5})$$

$$p(Z_{7}|\Gamma_{3}, L_{6})p(L_{6})$$



$$= \phi(\Gamma_1, \Gamma_0, u_1)\phi(\Gamma_2, \Gamma_1, u_1)\phi(\Gamma_3, \Gamma_2, u_3)\phi(Z_1, \Gamma_1, L_1)\phi(Z_2, \Gamma_1, L_2)$$

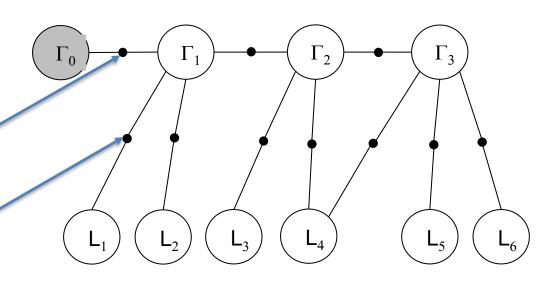
$$\phi(Z_3, \Gamma_2, L_3)\phi(Z_4, \Gamma_2, L_4)\phi(Z_5, \Gamma_3, L_4)\phi(Z_6, \Gamma_3, L_5)\phi(Z_7, \Gamma_3, L_6)$$

Full SLAM as Graph Optimization

Given the Factor Graph Full Joint Distribution

$$p(X,Z,U) = \prod_{i} \phi_{i}(X_{i})$$

The Full SLAM problem is reformulated as



$$X^{MAP} = \underset{X}{argmax} \ p(X|Z,U) = \underset{X}{argmax} \ p(X,Z,U) = \underset{X}{argmax} \ \prod_{i} \phi_{i}(X_{i})$$

Let's also assume to have Gaussian Factors (not mandatory but convenient)

$$\phi(\Gamma_1, \Gamma_0, u_1) = P(\Gamma_1 | \Gamma_0, u_1) = N(g(\Gamma_0, u_1), R) = \frac{1}{\sqrt{|2\pi R|}} \cdot \exp\left(-\frac{1}{2} \|g(\Gamma_0, u_1) - \Gamma_1\|_R^2\right)$$

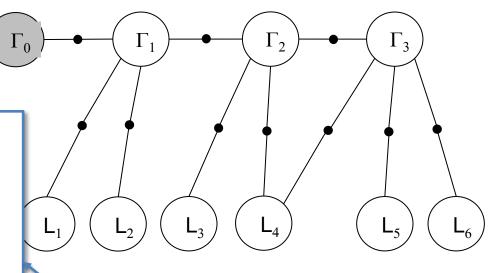
$$\phi(Z_1, \Gamma_1, L_1) = P(Z_1 | \Gamma_1, L_1) = N(h(\Gamma_1, L_1), Q) = \frac{1}{\sqrt{|2\pi Q|}} \cdot \exp\left(-\frac{1}{2} ||h(\Gamma_1, L_1) - Z_1||_Q^2\right)$$

Full SLAM as Graph Optimization

Given the Factor Granh Full Joint Distribution

$$x \sim N(\mu, \Sigma) = \frac{1}{\sqrt{|2\pi\Sigma|}} \cdot \exp\left(-\frac{1}{2} \|\mu - x\|_{\Sigma}^{2}\right)$$

$$\|\mu - x\|_{\Sigma}^{2} \equiv (\mu - x)^{T} \Sigma^{-1} (\mu - x)$$



$$(Z,U) = \underset{X}{argmax} \prod_{i} \phi_{i}(X_{i})$$

Let's also assume to have Gaussian Factors (not mandatory but convenient)

$$\phi(\Gamma_1, \Gamma_0, u_1) = P(\Gamma_1 | \Gamma_0, u_1) = N(g(\Gamma_0, u_1), R) = \frac{1}{\sqrt{|2\pi R|}} \cdot \exp\left(-\frac{1}{2} \|g(\Gamma_0, u_1) - \Gamma_1\|_R^2\right)$$

$$\phi(Z_1, \Gamma_1, L_1) = P(Z_1 | \Gamma_1, L_1) = N(h(\Gamma_1, L_1), Q) = \frac{1}{\sqrt{|2\pi Q|}} \cdot \exp\left(-\frac{1}{2} ||h(\Gamma_1, L_1) - Z_1||_Q^2\right)$$

Graph Optimization on Factor Graphs

The (Gaussian) Full SLAM problem because Odometry factors

$$\phi_{i=u_i}(X_i) \propto \exp\left(-\frac{1}{2}\|g_i(X_i) - \Gamma_i\|_R^2\right)^{\delta}$$

$$\phi_{i=z_i}(X_i) \propto \exp\left(-\frac{1}{2}\|h_i(X_i) - \mathbf{z}_i\|_Q^2\right)$$
 Measurement factors

factors

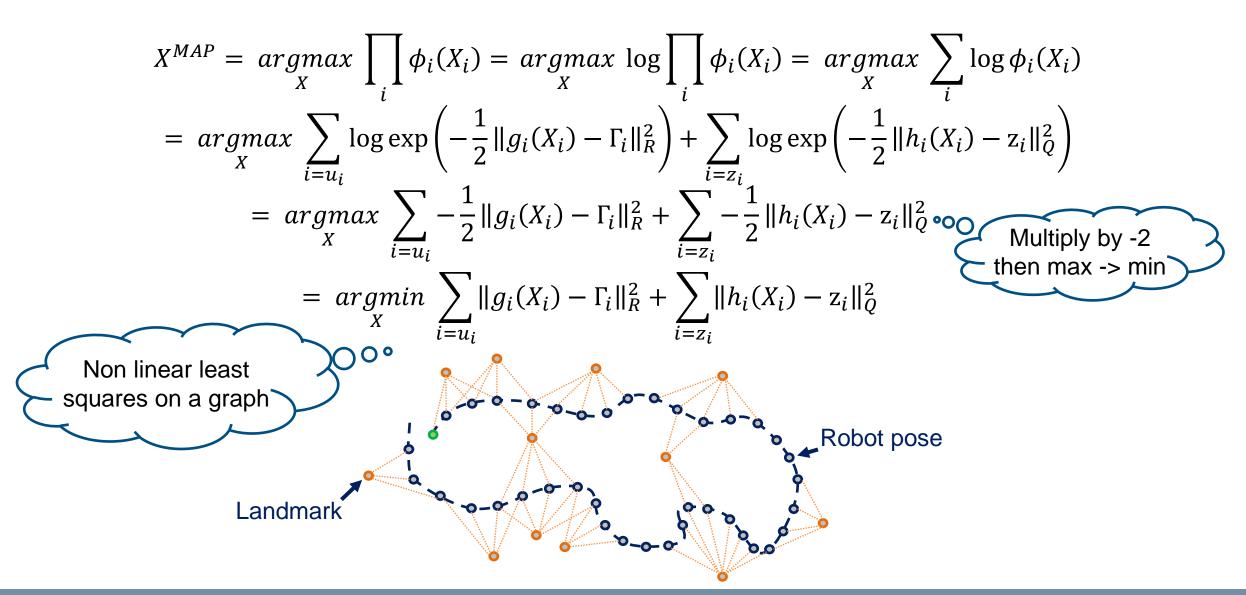
$$X^{MAP} = argmax \prod_{i} \phi_{i}(X_{i}) = argmax \prod_{i=u_{i}} \exp\left(-\frac{1}{2}\|g_{i}(X_{i}) - \Gamma_{i}\|_{R}^{2}\right) \prod_{i=z_{i}} \exp\left(-\frac{1}{2}\|h_{i}(X_{i}) - z_{i}\|_{Q}^{2}\right)$$

If we solve for the logarithm we get a simpler optimization algorithm

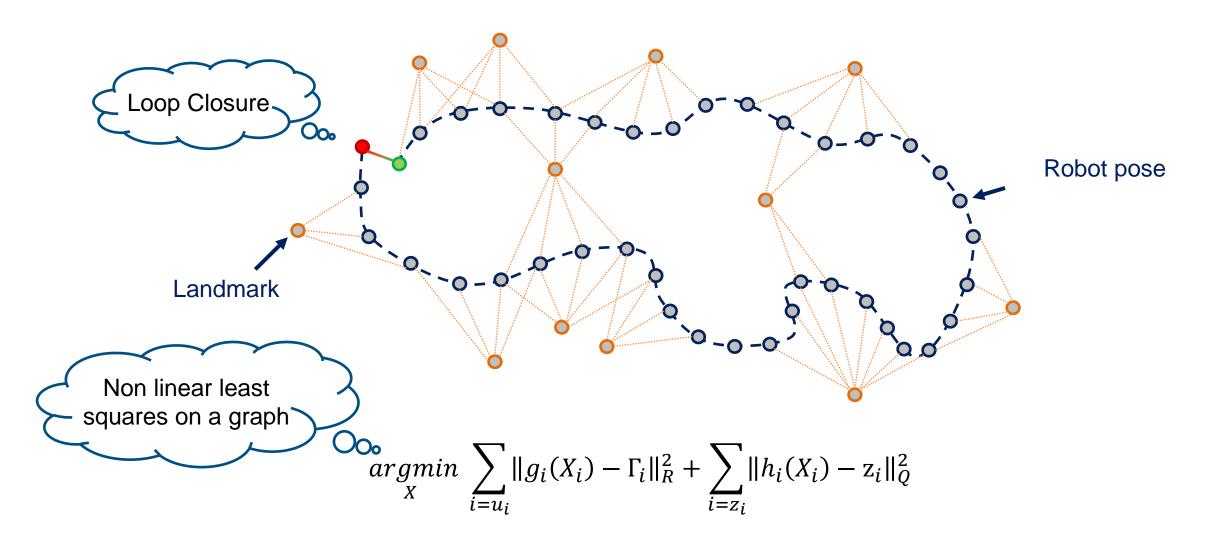
$$X^{MAP} = argmax \prod_{i} \phi_i(X_i) = argmax \log \prod_{i} \phi_i(X_i) = argmax \sum_{i} \log \phi_i(X_i)$$

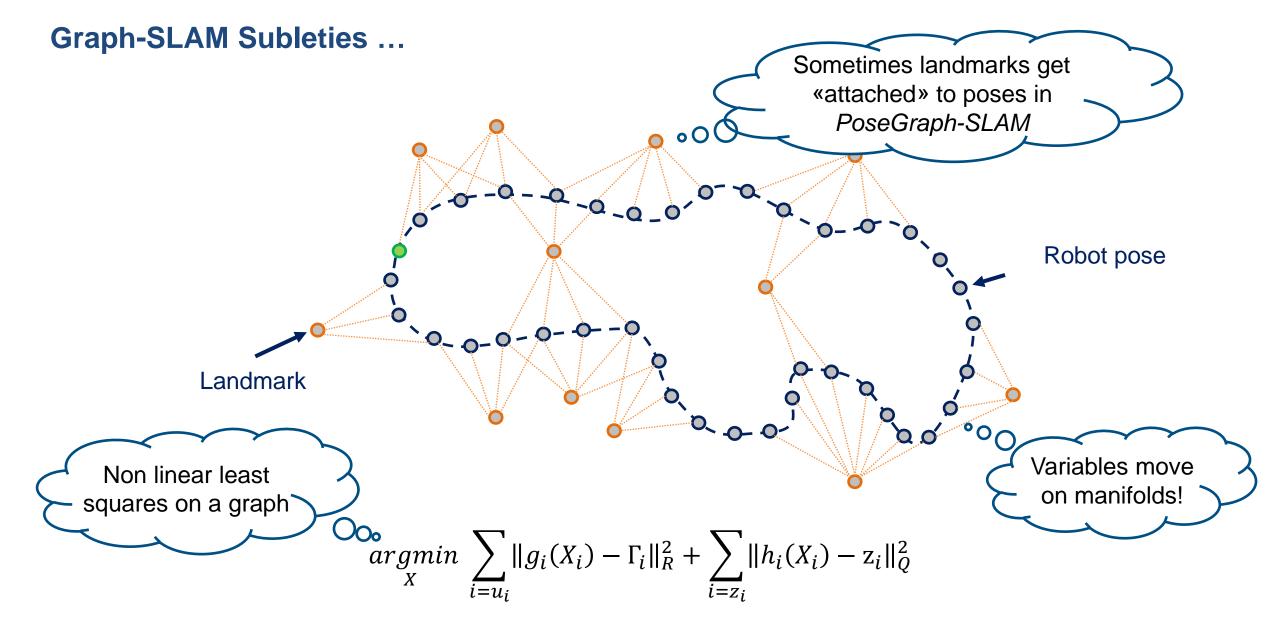
$$= argmax \sum_{i=u_i} \log \exp \left(-\frac{1}{2} \|g_i(X_i) - \Gamma_i\|_R^2\right) + \sum_{i=z_i} \log \exp \left(-\frac{1}{2} \|h_i(X_i) - z_i\|_Q^2\right)$$

Graph Optimization on Factor Graphs

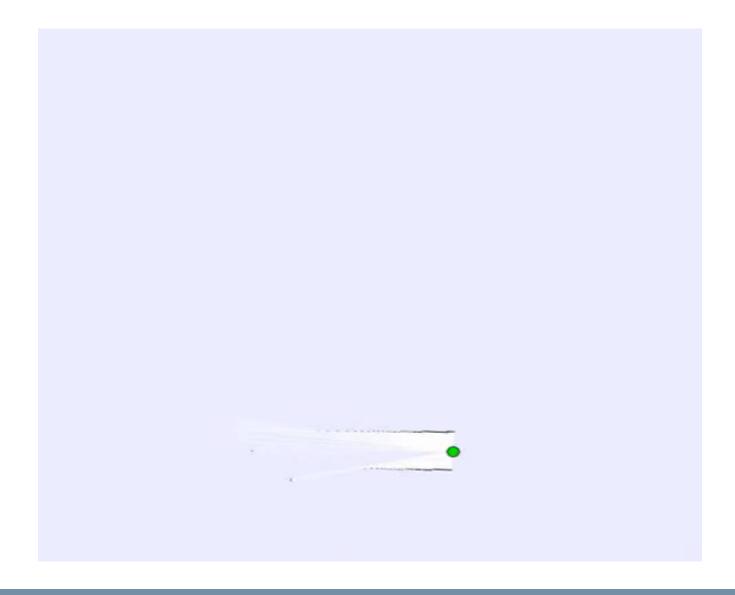


Graph-SLAM





Graph-SLAM Example



Solving non-linear least squares needs iterative adjustments (gradient descend)

$$\underset{X}{argmin} \sum_{i=u_i} \|g_i(X_i) - \Gamma_i\|_R^2 + \sum_{i=z_i} \|h_i(X_i) - z_i\|_Q^2$$

Let's focus on measurement factors, then the following extends to all factors

$$h_i(X_i) = h_i \left(X_i^0 + \Delta_i \right) \approx h_i \left(X_i^0 \right) + H_i \Delta_i$$

$$\Delta_i \equiv X_i - X_i^0, \quad H_i \equiv \frac{\partial h_i(X_i)}{\partial X_i} \big|_{X_i^0}$$
This is the usual Taylor expansion

We look for the single adjustment step which minimizes all measurement factors

$$\Delta^* = \underset{\Delta}{argmin} \sum_{i=z_i} \|h_i(X_i) - z_i\|_Q^2 = \underset{\Delta}{argmin} \sum_{i=z_i} \|H_i\Delta_i - (z_i - h_i(X_i^0))\|_Q^2$$

$$\Delta^* = \underset{\Delta}{argmin} \sum_{i=z_i} \|h_i(X_i) - z_i\|_Q^2 = \underset{\Delta}{argmin} \sum_{i=z_i} \left\| \underbrace{H_i \Delta_i - \left(z_i - h_i(X_i^0)\right)}_{e_i} \right\|_Q^2$$

We can rewrite the Mahalanobis norm as it follows turning it into quadratic

$$||e_i||_Q^2 \equiv e_i^T Q^{-1} e_i = (Q^{-1/2} e_i)^T (Q^{-1/2} e_i) = ||Q^{-1/2} e||_2^2$$

$$\Delta^* = \underset{\Delta}{argmin} \sum_{i=z_i} \| Q_i^{-1/2} H_i \Delta_i - Q_i^{-1/2} (z_i - h_i(X_i^0)) \|_2^2$$

From this we can get to

$$\Delta^* = \underset{\Delta}{argmin} \sum_{i} \|A_i \Delta_i - b_i\|_2^2 = \underset{\Delta}{argmin} \|A\Delta - b\|_2^2$$
 squares problem
$$A_i = Q_i^{-1/2} H_i, \quad b_i = Q_i^{-1} \left(z_i - h_i(X_i^0) \right)$$
 Lets' assume Odometry is included.

Linear least

too from now on ...

$$\Delta^* = \underset{\Delta}{\operatorname{argmin}} \sum_{i} ||A_i \Delta_i - b_i||_2^2 = \underset{\Delta}{\operatorname{argmin}} ||A\Delta - b||_2^2$$

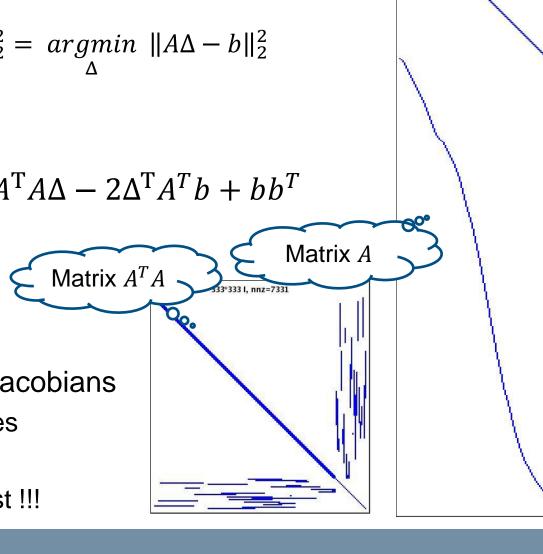
Let's solve the least squares problem

$$||A\Delta - b||_2^2 = (A\Delta - b)^T (A\Delta - b) = \Delta^T A^T A \Delta - 2\Delta^T A^T b + bb^T$$

$$\frac{\partial \|A\Delta - b\|_2^2}{\partial \Delta} = 0 \quad \Longrightarrow \quad A^T A \Delta = A^T b$$

Matrix A from Odometry and Measurement Jacobians

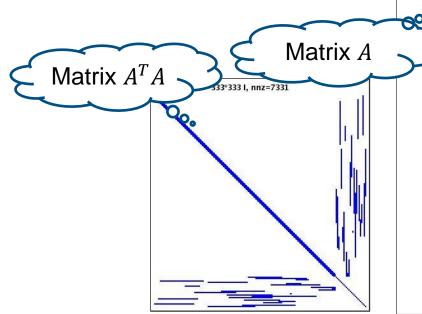
- Factors are constraints between 2 variables
- Matrix A is sparse and matrix A^TA too
- We can use sparse methods which are fast !!!



$$\frac{\partial \|A\Delta - b\|_2^2}{\partial \Delta} = 0 \quad \Longrightarrow \quad A^T A \Delta = A^T b$$

Naïve least squares uses pseudo inverse, however $(A^TA)^{-1}$ is $O(n^3)$

$$\Delta = (A^T A)^{-1} A^T b$$



$$\frac{\partial \|A\Delta - b\|_2^2}{\partial \Delta} = 0 \quad \Longrightarrow \quad A^T A \Delta = A^T b$$

Naïve least squares uses pseudo inverse, however $(A^TA)^{-1}$ is $O(n^3)$

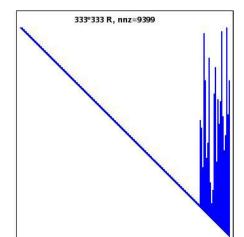
$$\Delta = (A^T A)^{-1} A^T b$$

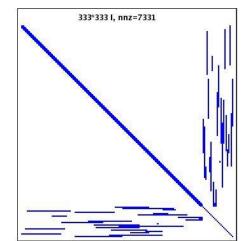
Cholesky decomposition $A^TA = R^TR$ (R upper triangular) is $O(n^{1.5})$ to $O(n^2)$

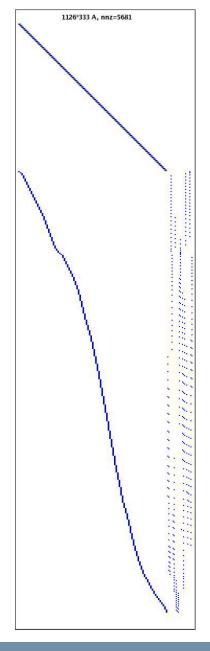
$$R^{T}R\Delta = A^{T}b$$

$$R^{T}y = A^{T}b$$

$$R^{T}\Delta = y$$







$$\frac{\partial \|A\Delta - b\|_2^2}{\partial \Delta} = 0 \quad \Longrightarrow \quad A^T A \Delta = A^T b$$

Naïve least squares uses pseudo inverse, however $(A^TA)^{-1}$ is $O(n^3)$

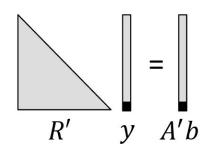
$$\Delta = (A^T A)^{-1} A^T b$$

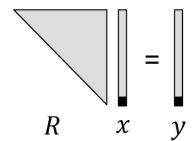
Cholesky decomposition $A^TA = R^TR$ (R upper triangular) is $O(n^{1.5})$ to $O(n^2)$

$$R^{T}R\Delta = A^{T}b$$

$$R^{T}y = A^{T}b$$

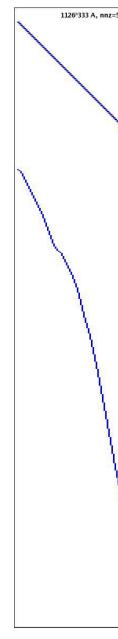
$$R^{T}\Delta = y$$





Solve by forward / backward substitution ...

... and via LDL^T decomposition is even faster !!!



$$\frac{\partial \|A\Delta - b\|_2^2}{\partial \Delta} = 0 \quad \Longrightarrow \quad$$

Naïve least squares uses pseudo inverse, however

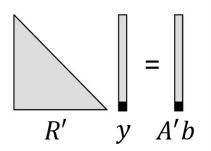
$$\Delta = (A^T A)^{-1} A$$

Cholesky decomposition $A^TA = R^TR$ (R upper tri

$$R^{T}R\Delta = A^{T}b$$

$$R^{T}y = A^{T}b$$

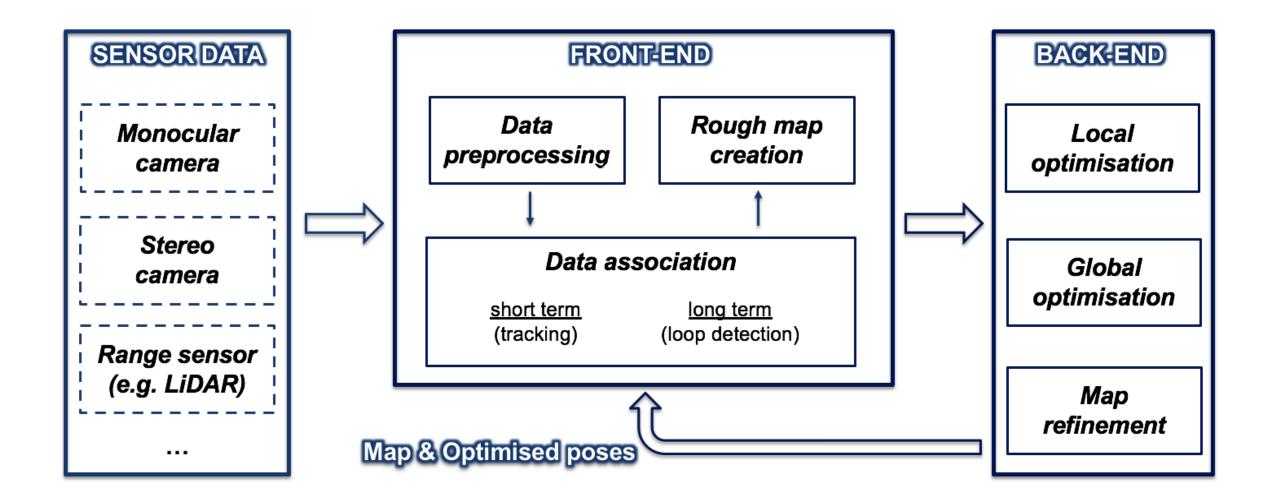
$$R^{T}\Delta = y$$



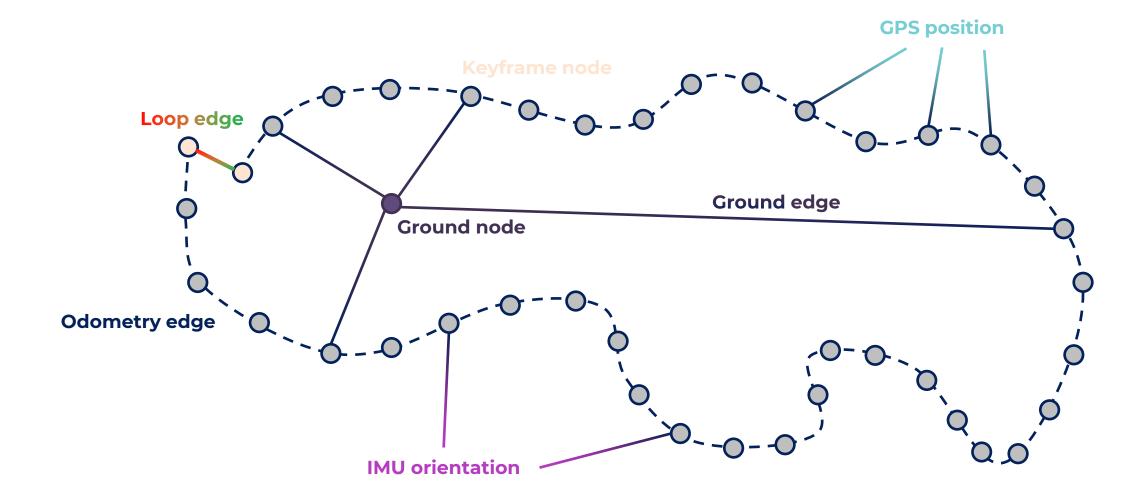
Solve by forward / backward substitution ...

... and via LDL^T decomposition is even faster !!!

General Architecture of a Modern SLAM System



Pose-Graph SLAM



Pose-Graph SLAM

