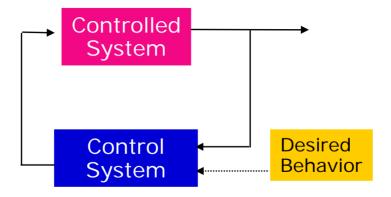
Applications of fuzzy systems

Andrea Bonarini

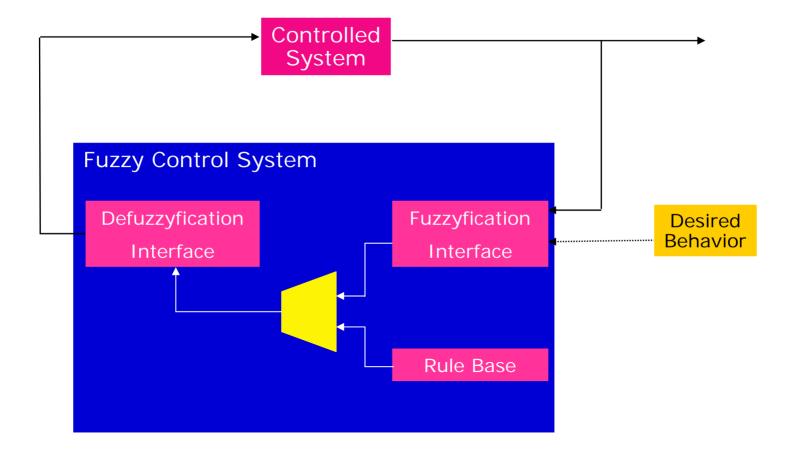
Artificial Intelligence and Robotics Lab
Department of Electronics and Information
Politecnico di Milano


E-mail: bonarini@elet.polimi.it URL:http://www.dei.polimi.it/people/bonarini

Applications of fuzzy models

- Fuzzy control
- Interfaces
 - user modeling
 - information retrieval
 - database queries
- "AI" Systems
 - Expert Systems
 - Scheduling
 - Decision Support Systems (DSS)

What is a control system?


A system able to control the behavior of another system (a device, a biological body, a plant, a community, the society, ...)

In most cases it is a PID controller, where the output \boldsymbol{u} depends on the difference e between the desired, and the observed behavior, its derivative (how fast \boldsymbol{e} changes) and its integral (how large \boldsymbol{e} has been in the past):

$$u = K_P e + K_D \frac{de}{dt} + K_I \frac{1}{T} \int_0^t e^t dt$$

What is a fuzzy control system?

Why fuzzy control is so successful?

Features:

- robustness
- wide range of applicability
- heuristic definition
- smoothness
- non linearity

Example FLC - 1: Wide range of variable values

1985: Sendai (Japan) metro

Goal: Control train stop

Why fuzzy?

Different load conditions in the different stations

Results

- Energy saving
- Precision
- Higher comfort

Example FLC - 2: wide range of variable values

1996: oven for alluminum bars aging

Goal: reach the aging temperature according to technological constraints, in the shortest time


to

Why fuzzy?

- Different load conditions (10,000 different profiles)
- Low quality of sensor data (air temperature at the ends of the bars)

Results

- Energy saving
- Higher speed
- No need to tune continuously the control system

Example FLC - 3: noisy systems

1990: mini-helicopter in windy days (Tokio)

Goal: Control the stability and movement of the helicopter

Why fuzzy?

No forecast about the situation

Results

It flies...

Example FLC - 4: Low cost control

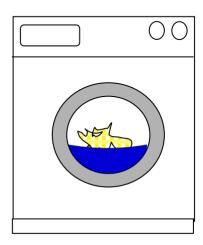
1990: fuzzy video cameras, fuzzy vacuum cleaners, fuzzy washing machines, fuzzy refrigerators, fuzzy rice cookers, fuzzy taps...

Why fuzzy?

- •Simplify the interaction with the user
- •Nice performances at low cost (low cost sensors, low cost processors, ...)

Results

Reliable and simple mass products at a low cost


FLC-4 – An example: fuzzy washing machine

Goal:

- 1. recognize the kind of fabric and adapt the washing
- rinse till needed
- 3. adapt to the water hardness

How:

- Measure the charging time of a condenser and the number of pressostate activations
- 2. measure the dielectric coefficient of the water at the beginning and rinse till it become the same at the end.

Example FLC - 5: control of complex systems

1986: cement kiln, chemical plants

Goal: control the plant

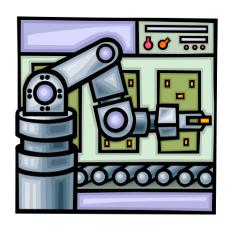
Why fuzzy?

- hard to define and parametrize a mathematical model
- experts available (operators)

Results

effective and robust control

Example FLC - 6: hybrid control


1990: temperature sensor, robot arm, ...

Why fuzzy + PID?

Augment the range of applicability of a PID

Results

Fast control without overshooting

Example FLC - 7: high-level control

Since 1998: autonomous robot

Why fuzzy?

Clear representation of control rules

High level tasks

Results

Good control developed in a short time

No Movie

Fuzzy databases and information retrieval

Flexible queries with human-like sensibility

E.g.:

"Give me the names of all the people that have **recently** invested **a lot**"

SELECT Name, MatchingRate

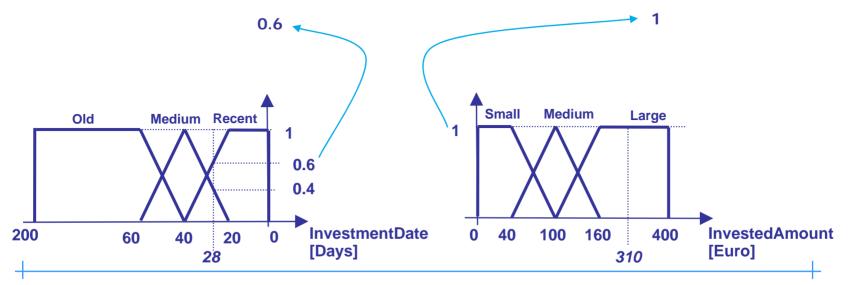
FROM Investments

WHERE ((InvestmentDate is Recent) 0,8) AND ((InvestedAmount is Large) 0,5)

Name	InvestmentDate	InvestedAmount
PAOLO BIANCHI	28	310
MARTA ROSSI	10	170

Fuzzy databases and information retrieval

Flexible queries with human-like sensibility


E.g.:

"Give me the names of all the people that have recently invested a lot"

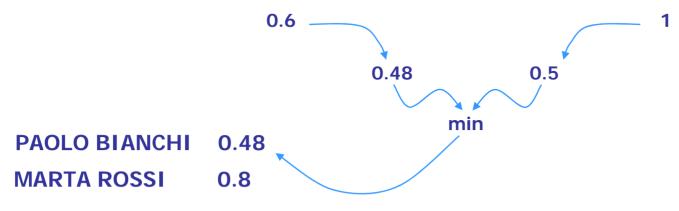
SELECT Name, MatchingRate

FROM Investments

WHERE ((InvestmentDate is Recent) 0,8) AND ((InvestedAmount is Large) 0,5)

Fuzzy databases and information retrieval

Flexible queries with human-like sensibility


E.g.:

"Give me the names of all the people that have recently invested a lot"

SELECT Name, MatchingRate

FROM Investments

WHERE ((InvestmentDate is Recent) 0.8) AND ((InvestedAmount is Large) 0.5)

. . .

Example AIFS - 1: Quality control

Goal:

Control the quality of a product (car, beer,...) in a qualitative way, and relate the results to the part of the production process responsible for eventual problems

Why fuzzy?

Qualitative data from operators

Results

Quality control at low cost: the operator provides data, he/she should not interpret them

Example AIFS - 2: diagnosis

Goal:

Diagnosis of industrial plants in the commissioning phase

Why fuzzy?

- approximate, uncertain data
- approximate diagnostic knowledge, low reliability

Results

- fast diagnosis at low cost
- it's easy to understand the diagnostic process

Example AIFS - 3: scheduling

Goal:

production scheduling in a job-shop production plant

Why fuzzy?

fuzzy definition of constraints

Results:

fast and effective scheduling systems

Example AIFS - 4: advice-giving

Goal:

decision support (e.g.: when to buy bonds, who is the right person for a job,...)

Why fuzzy?

- · uncertain and approximate data
- approximate decision process
- shared formal model

Results

suggestions about decisions to be taken, weighted by criteria that can be easily defined by the management

Example AIFS - 5: User-modeling

Goal:

model how a driver changes gears in different road situations to implement a robotic gear shift (CRF)

Why fuzzy?

- · uncertain and approximate data
- approximate decision process
- high level features synthesized from objective data

Results

adaptive robotic gear shift