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Reminder on Course Inspiration

Lectures are inspired by the book “An Introduction to Statistical Learning”

• Same authors of ESL, but ISL is easier! 

• Practical perspective with labs and 

exercises using R language

• Available online as pdf (as ESL)

Slides from the teacher (except for clustering) are taken from these 

books, while practicals have been rewritten from scratch … in python!

www.statlearning.com
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What is Statistical Learning?

𝑌𝑖 = 𝑓 𝑋𝑖 + 𝜀𝑖

Suppose we observe 𝑌𝑖 and 𝑋𝑖 = 𝑋𝑖1, … , 𝑋𝑖𝑝 for 𝑖 = 1,… , 𝑛

• Assume a relationship exists between

Y and at least one of the observed X’s

• Assume we can model this as

• f : unknown function systematic

• εi : zero mean random error

The term Statistical Learning refers to using the data to “learn” f
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Example: Income vs. Education Seniority

Function f might also 

involve multiple 

variables …
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Why do we estimate f ?

Prediction: Produce a good estimate for f to make accurate predictions 

for the response, Y/G, based on a new value of X.

Inference: Investigate the type of relationship between Y/G and the X's to 

control/influence Y/G. 

• Which particular predictors actually affect the response?

• Is the relationship positive or negative?

• Is the relationship a simple linear one or is it more complicated etc.?

ModelX Y/G
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Examples for Prediction & Inference

Direct Mail Prediction

• Predicting how much money an individual will donate based on observations 

from 90,000 people on which we have recorded 400 different characteristics.

• Don’t care too much about each individual characteristic. 

• Just want to know: For a given individual should I send out a mailing?

Medium House Price 

• Which factors have the biggest effect on the response

• How big the effect is

• Want to know: how much impact does a river view have on the house value
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How Do We Estimate f ?
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{ 𝑿𝟏, 𝑌1 , 𝑿𝟐, 𝑌2 , … , 𝑿𝒏, 𝑌𝑛 }

𝑌𝑖 ≈ መ𝑓(𝑿𝒊)

We have observed a set of training data

Use statistical method/model to estimate f

so that for any (𝑿𝒊, 𝑌𝑖)

Based on the model f, statistical methods/models are usually divided in 

• Parametric Methods/Models

• Non-parametric Methods/Models
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Parametric Methods (Part 1)

Parametric methods make an assumption about the model underlining f

• Reduce the problem of estimating f to estimating a set of parameters

• They involve a two-step model based approach

STEP 1: Make some assumption about the functional form of f, i.e. come 

up with a model (e.g., a linear model)

STEP 2: Use the training data to fit the model, i.e., estimate f through the 

unknown parameters

ippiii XXXf  ++++= 22110)(X

p 210

We will see more 

flexible/powerful models 

than linear ones …

Ordinary Least Sqares are 

used for this, but alternative 

methods exists too.
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Example: A Linear Regression Estimate

Even if the standard deviation is low we will still get a bad answer if we 

use the wrong model (high bias).

f = b0 +b1 ´Education+b2 ´Seniority
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Non-parametric Methods

Sometimes are referred as “sample-based” or “instance-based” methods, 

they do not make explicit assumptions about the functional form of f, and 

exploit the training data “directly”

Advantages: 

• They accurately fit a wider range of possible shapes of f

• They do not require a “training” phase

Disadvantages: 

• A very large number of observations required to obtain an accurate estimate

• Higher computational cost at “testing” time

• They accurately fit a wider range of possible shapes of f.
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Example: A Thin-Plate Spline Estimate

Non-parametric regression methods are more flexible thus they can 

potentially provide more accurate estimates

Smooth thin-plate spline fit
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Prediction Accuracy vs Model Interpretability

Why not just use a more flexible method if it is more realistic?

Reason 1: A simple method, e.g., linear regression, produces a model 

which is much easier to interpret (the Inference part is better). 

• E.g., in a linear model, βj is the average increase in Y for a one unit increase in 

Xj holding all other variables constant.

Reason 2: Even if interested in prediction, it is often possible to get more 

accurate predictions with a simple, instead of a complicated, model. 
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Example: A Poor Estimate

Non-parametric regression methods can also be too flexible and produce 

poor estimates for f (high variance)

Thin-plate spline fit with zero 
training error
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Flexibility vs Model Interpretability

But more flexible 

means lower errors ?!?
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Reducible vs Irreducible Error

The error our estimate will have has two components

• Reducible error due to the choice of f (model complexity)

• Irreducible error due to the presence of εi in the training set

𝑌𝑖 = 𝑓 𝑋𝑖 + 𝜀𝑖

ModelX Y/G

I will come back to this 

soon … several times!
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Irreducible error … because noise matters!
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This means we’ll have errors due to 

noise even with the right model!!!
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Reducible vs Irreducible Error (Part 2)

The error our estimate will have has two components

• Reducible error due to the choice of f (model complexity)

• Irreducible error due to the presence of εi in the training set

Let assume መ𝑓 and 𝑋 fixed for the time being

𝑌𝑖 = 𝑓 𝑋𝑖 + 𝜀𝑖

Can you derive this?



matteo.matteucci@polimi.it 18

Reducible vs Irreducible Error (Part 3)
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Quality of Fit

Suppose we have a regression problem

• A common accuracy measure is mean squared error (MSE) 

• Where ො𝑦𝑖 is the prediction for the observation in our training data.

Training is designed to make MSE small on training data, but …

• What we really care about is how well the method works on new data.

We call this new data “Test Data”.

• There is no guarantee that the method with the smallest Training MSE

will have the smallest Test MSE


=

−=
n

i

ii yy
n

MSE
1

2)ˆ(
1
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Training vs. Test Mean Squared Error

The more flexible a method is, the lower its training MSE will be, i.e., it will 

“fit” or explain the training data very well.

• Side Note: More Flexible methods (such as splines) can generate a wider range of 

possible shapes to estimate f as compared to less flexible and more restrictive 

methods (such as linear regression). The less flexible the method, the easier to 

interpret the model. Thus, there is a trade-off between flexibility and model 

interpretability. 

However, the test MSE may in fact be higher for a more flexible method 

than for a simple approach like linear regression 
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Example 1

Black: Truth
Orange: Linear Estimate
Blue:  smoothing spline 

Green:  smoothing spline

RED: Test MES
Grey: Training MSE

Dashed:  Minimum possible 
test MSE (irreducible error)
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Example 2

Black: Truth
Orange: Linear Estimate
Blue:  smoothing spline

Green:  smoothing spline

RED: Test MES
Grey: Training MSE

Dashed:  Minimum possible test MSE 
(irreducible error)
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Example 3

Black: Truth
Orange: Linear Estimate
Blue:  smoothing spline

Green:  smoothing spline

RED: Test MES
Grey: Training MSE

Dashed:  Minimum possible
test MSE (irreducible error)
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Bias/ Variance Tradeoff

Test vs. Training MSE’s illustrates a very important tradeoff that governs 

the choice of statistical learning methods

• Bias refers to the error that is introduced by modeling a real life problem

by a much simpler problem

• E.g., linear regression assumes that there is a linear relationship between Y and X.

In real life, some bias will be present

• The more flexible/complex a method is the less bias it will have

• Variance refers to how much your estimate for f would change by

if you had a different training data set

• Generally, the more flexible a method is the more variance it has.
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New Notation (from ESL)
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Let’s consider Expected Squared Prediction Error (over any possible data)

Let apply an “augmentation trick” to the expectation

• Being f deterministic we have                 ,             ,, and 

• Noise is independence

Bias-Variance in Regression (Part 1)
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Bias-Variance in Regression (Part 2)

From the previous we get something already know

Lets check the second expected value

Because f is deterministic and 𝐸 𝐸 𝑧 = 𝐸 𝑧 : 



matteo.matteucci@polimi.it 28

For any given, X=x, the expected test MSE for a new Y will be

I.e., as a method/model gets more complex 

• Bias will decrease 

• Variance will increase 

• Expected Prediction Error may go up or down!

The Trade-off

Expected Prediction Error

Irreducible Error Model  Variance

Model Bias



matteo.matteucci@polimi.it 29

Test MSE, Bias and Variance
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Can we actually compute those?

For a Linear Model

For the KNN regression fit
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What about Classification?

For a classification problem we can use the error rate i.e.

• Where                   is an indicator function, which will give 1 if the condition               

is correct, otherwise it gives a 0.

• Error rate represents the fraction of incorrect classifications, or misclassifications 

The Bayes Classifier minimizes the Average Test Error Rate

The Bayes error rate is the lowest possible Error Rate achievable knowing 

the “true” distribution of the data:

nyyIRateError
n

i

ii /)ˆ( 
1


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=

)ˆ( ii yyI 

)|(max 0xXjYPj ==
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Bayes Classifier

Bayes Decision 

Boundary

Bayes Error 

Rate = 0.1304
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K-Nearest Neighbors (KNN)

The k Nearest Neighbors method is a non parametric model often used 

to estimate the Bayes Classifier

• For any given X we find the k closest neighbors to X in the training data, and 

examine their corresponding Y

• If the majority of the Y’s are orange we predict orange otherwise guess blue.

Some notes about such a simple classifier …

• The smaller the k, the more flexible the method will be

• KNN has “zero” training time, some cost at runtime to find the k closest 

neighbors reduced by indexing

• KNN has problems in high dimensional spaces, it needs approximate methods



matteo.matteucci@polimi.it 34

KNN Example with k = 3
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Simulated Data: K = 10

Bayes Error 

Rate = 0.1304

KNN Error 

Rate = 0.1363
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K = 1 and K = 100
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Training vs. Test Error Rates
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Training errors will decline while test errors will decline at first (as 

reductions in bias dominate) but will then start to increase again (as 

increases in variance dominate).

A Fundamental Picture

Overfitting boils

down to this!!!



matteo.matteucci@polimi.it 39

A More Fundamental Picture
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Question Time!

What is Statistical Learning?

Why do we estimate f?

How do we estimate f?

What does the bias-variance trade-off state?

What about classification?

Some important taxonomies … you should by heart!

• Prediction vs. Inference

• Parametric vs. Non Parametric models

• Regression vs. Classification problems

• Supervised vs. Unsupervised learning

ModelX Y/G


