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Localization with Knowm Map

Motion Model
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Disclaimer …

Slides from now on have been heavily “inspired” by the teaching material kindly 

provided with: S. Thrun, D. Fox, W. Burgard. “Probabilistic Robotics”. MIT Press, 2005

http://robots.stanford.edu/probabilistic-robotics/

You can refer to the original source for deeper analysis and references on the topic …

http://robots.stanford.edu/probabilistic-robotics/
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Range Sensors Models

The sensor model describes P(z|x), i.e., the probability of a measurement z given that 

the robot is at position x.



6

Proximity Sensors

The sensor model describes P(z|x), i.e., the probability of a measurement z given that 

the robot is at position x.

In particular a scan z consists of K measurements.

Individual measurements are independent given robot 

position and surrounding map.
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Typical Measurement Errors of an Range Measurements

The sensor model describes P(z|x), i.e., the probability of a measurement z given that 

the robot is at position x.

Masurements can come from:

1.Beams reflected by obstacles

2.Beams reflected by persons or
caused by crosstalk

3.Random measurements

4.Max range measurements
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Distance perception: Laser Range Finder

Lasers are definitely more accurate sensors

• 180 ranges over 180° (up to 360 °)

• 1 to 64 planes scanned, 10-75 scans/s

• <1cm range resolution

• Max range up to 50-80 m

• Issues with mirrors, glass, and matte black.

> 80.000 €
~ 40.000 €~ 6000 €

< 1000 €
~ 10.000 €
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Beam Sensor Model (I)

The laser range finder model describe each single measurement using

Measurement noise
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Beam Sensor Model (II)

The laser range finder model describe each single measurement using

Random measurement Max range
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Beam Sensor Model (III)

The laser range finder model describe each single measurement using
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Acquire some data from the sensor, e.g., when the target is at 300 cm and 400 cm

Then estimate the model parameters via maximum likelihood:

Sensor Model Calibration (Sonar)

Sonar

)|( expzzP

300 cm 400 cm
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Laser

Acquire some data from the sensor, e.g., when the target is at 300 cm and 400 cm

Then estimate the model parameters via maximum likelihood:

Sensor Model Calibration (Laser)

)|( expzzP

300 cm 400 cm
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Discete Model for Range Sensor

Instead of densities, consider discrete steps along the sensor beam

Sonar

Laser



15

Sensor Model Likelihood

z

P(z|x,m)
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Scan Sensor Model

The beam sensor model assumes independence between beams and between 

physical causes of measurements and has some issues:

• Overconfident because of independency assumptions

• Need to learn parameters from data

• A different model should be learned for different angles w.r.t. obstacles

• Inefficient because it uses ray tracing

The Scan sensor model simplifies with:

• Gaussian distribution with mean at distance to closest obstacle,

• Uniform distribution for random measurements, and 

• Small uniform distribution for max range measurements
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Scan Sensor Model Example

P(z|x,m)Map m Likelihood field
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San Jose Tech Museum

Occupancy grid map Likelihood field
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Scan Sensor Matching

Extract likelihood field from scan and use it to match different scan:
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Scan Sensor Matching

Extract likelihood field from scan and use it to match different scan:

• Highly efficient, uses 2D tables only.

• Smooth with respect to small changes 

in robot position

• Allows gradient descent (scan matching)

• Ignores physical properties of beams.

However it does not 

work with sonars
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Landmarks

Landmark sensors provides

• Distance (or)

• Bearing (or)

• Distance and bearing

Can be obtained via

• Active beacons (e.g., radio, GPS)

• Passive (e.g., visual, retro-reflective)

Standard approach is triangulation
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Landmark Models with Uncertainty

Explicitly modeling uncertainty in sensing is key to robustness:

• Determine parametric model of noise free measurement

• Analyze sources of noise

• Add adequate noise to parameters (eventually mix in densities for noise)

• Learn (and verify) parameters by fitting model to data

The likelihood of measurement is given by “probabilistically comparing” the actual with 

the expected measurement.
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Landmark Detection Model

For landmak 𝑖 in map 𝑚 the measurement 𝑧 = (𝑖, 𝑑, 𝛼) for a robot at (𝑥, 𝑦, 𝜃) is given by

Detection probability might depend on the distance/bearing

Then we have to take into account false positives too 

22 ))(())((ˆ yimximd yx 
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RoboCup Example

𝑃(𝑧1, 𝑧2, 𝑧3|𝑥,𝑚)

𝑃(𝑧1|𝑥,𝑚) 𝑃(𝑧2|𝑥,𝑚) 𝑃(𝑧3|𝑥,𝑚)
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Localization with Knowm Map

Motion Model

(Kinematics)

Sensor Model

Bayesian Filtering
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Dynamic Bayesian Networks and Localization
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Bayesian Filtering Framework

We want to compute an estimate of the posterios  probabibility of robot state 𝑥𝑡

from the stream of information about movement and sensors

In particular we assume known:

• The prior probability of the system state 𝑃(𝑥0)

• The motion model 𝑃(𝑥′|𝑥, 𝑢)

• The sensor model 𝑃(𝑧|𝑥,𝑚)

),,,|()( 11 tttt zuzuxPxBel 

},,,{ 11 ttt zuzud 
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Markov Assumptions

Underlining assumption behind Bayes filtering:

• Perfect model, no approximation errors

• Static and stationary world

• Independent noise

),|(),,|( 1:1:11:1 ttttttt uxxpuzxxp  

)|(),,|( :1:1:0 tttttt xzpuzxzp 
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111 )(),|(),|(  ttttttt dxxBelxuxPmxzP

Bayes Filters
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Bayes Filter Algorithm

111 )(),|()|()(  tttttttt dxxBelxuxPxzPxBel 

Algorithm Bayes_filter( Bel(x), d ):

0

if d is a perceptual data item z then

For all x do

For all x do

else if d is an action data item u then

For all x do

return Bel’(x)

)()|()(' xBelxzPxBel 

)(' xBel

)(')(' 1 xBelxBel 

')'()',|()(' dxxBelxuxPxBel 

How to represent 

such belief?

Based on such representation:

• Discrete filters

• Kalman filters

• Sigma-point filters

• Particle filters

• ...
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Piecewise Constant Approximation

)(xBel
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Piecewise Constant Approximation
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Discrete Bayesian Filter Algorithm

Algorithm Discrete_Bayes_filter( Bel(x),d ):

h=0

If d is a perceptual data item z then

For all x do

For all x do

Else if d is an action data item u then

For all x do

Return Bel’(x)

)()|()(' xBelxzPxBel 
)(' xBel

)(')(' 1 xBelxBel 


'
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Tis and Tricks

Belief update upon sensory input and normalization iterates over all cells

• When the belief is peaked (e.g., during position tracking), avoid

updating irrelevant parts.

• Do not update entire sub-spaces of the state space and monitor

whether the robot is de-localized or not by considering likelihood

of observations given the active components

To update the belief upon robot motions, assumes a bounded Gaussian model to 

reduce the update from O(n2) to O(n)

• Update by shifting the data in the grid according to measured motion

• Then convolve the grid using a Gaussian Kernel.
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Grid Based Localization
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Bayes Filter Algorithm

111 )(),|()|()(  tttttttt dxxBelxuxPxzPxBel 

Algorithm Bayes_filter( Bel(x), d ):

0

If d is a perceptual data item z then

For all x do

For all x do

Else if d is an action data item u then

For all x do

Return Bel’(x)

)()|()(' xBelxzPxBel 

)(' xBel

)(')(' 1 xBelxBel 

')'()',|()(' dxxBelxuxPxBel 

How to represent 

such belief?

Based on such representation:

• Discrete filters

• Kalman filters

• Sigma-point filters

• Particle filters

• ...
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Bayes Filter Reminder

Prediction:

Correction/Update:

111 )(),|()(  tttttt dxxBelxuxpxBel

)()|()( tttt xBelxzpxBel 

111 )(),|()|()(  tttttttt dxxBelxuxPxzPxBel 
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Localization with Knowm Map

Update

Prediction

Update

Prediction
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Bayes Filter Reminder

Prediction:

Correction/Update:

Can we easily compute the integrals (η is an integral too) in closed form

for continuos distributions?

Is there any continuous distribution for which this is possible?

111 )(),|()(  tttttt dxxBelxuxpxBel

)()|()( tttt xBelxzpxBel 

NO!

YES!

111 )(),|()|()(  tttttttt dxxBelxuxPxzPxBel 
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Gaussian Distribution
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Properties of Gaussian Distribution
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Discrete Time Kalman Filter

• (n x n) describes state evolves from t to t-1 w/o controls or noise

• (n x l) describes how control ut changes the state from t to t-1

• (k x n) that describes how to map the state xt to an observation zt

• random variables representing process and measurement noise assumed 

independent and normally distributed with covariance Rt and Qt respectively.

tttttt uBxAx  1
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Linear Gaussian Systems

Initial belief is normally distributed:

Dynamics are linear function of state and control plus additive noise:

Observations are linear function of state plus additive noise:

 0000 ,;)(  xNxBel
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Linear Gaussian System: Prediction

Prediction: 
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Linear Gaussian System: Observation

Update:
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Kalman Filter Algorithm

Algorithm Kalman_filter( µt-1, Σt-1, ut, zt):

Prediction:

Correction:

Return µt, Σt

ttttt uBA  1

t

T

tttt RAA  1

1)(  t

T
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tttt CKI  )(

• Polynomial in measurement

dimensionality k and state 

dimensionality n: O(k2.376 + n2) 

• Optimal for linear Gaussian systems 

• Most robotics systems are nonlinear 
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