
Robotics

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Robot Motion Control (and Planning)

2

Sensors

Where am I?

A Simplified Sense-Plan-Act Architecture

Trajectory Planning

Lower Frequency

Trajectory

Trajectory Following

(and Obstacle Avoidance)

Motion Commands
Current

Position

Goal Position
Map

High Frequency

Localization

Mapping

3

Sensors

A Simplified Sense-Plan-Act Architecture

Trajectory Planning

Lower Frequency

Trajectory

Trajectory Following

(and Obstacle Avoidance)

Motion Commands
Current

Position

Goal Position
Map

High Frequency

Local Planner

(control)

4

Open loop control

A mobile robot is meant to move from one place to another

• Pre-compute a smooth trajectory based on motion

segments (e.g., line or circles) from start to goal

• Execute the planned trajectory till the goal

Disadvantages:

• Not easy to pre-compute a feasible trajectory

• Limitations and constraints of the robots

velocities and accelerations

• Does not handle dynamical changes (obstacles)

• No recovery from errors

yI

xI

goal

5

Feedback control (simple diff drive example)

The trajectory is recomputed / adapted online

via a simple control schema for path following

• Control orientation acting on angular velocity

• Control distance acting on linear velocity

6

Feedback control (simple diff drive example)

The trajectory is recomputed / adapted online

via a simple control schema for path following

• Control orientation acting on angular velocity

• Control distance acting on linear velocity

𝑒𝜃 = 0

𝑒𝜌 < ҧ𝑒𝜌

𝑒𝜃 = 0

7

Feedback control (simple diff drive example)

Next Point
Sequencing

Position
Control

Orientation
Control

Desired path

Speed
Control

Speed
Control

𝑥𝑑, 𝑦𝑑

𝜃𝑑

𝑣

𝜔 𝑉𝐿

𝑉𝑅

Control Loop

Direct Kinematics

(localization)

Inverse

Kinematics

Inner control loop

for velocitiesWhat about

Obstacles?

8

Obstacle Avoidance (Local Path Planning)

Obstacle avoidance should:

• Follow the planned path

• Avoid unexpected obstacle (i.e., not in the map)

Several proposed methods in the literature

• Potential field methods [Borenstein, 89]

• Vector field histogram [Borenstein, 91, 98, 00]

• Curvature-Velocity [Simmons, 96]

• Nearness diagram [Minguez & Montano, 00]

• Dynamic Window Approach [Fox, Burgard, Thrun, 97]

• …

Sometimes used

for planning

9

The Simplest One …

Assumes a leftist robot

“Bugs” have little if any knowledge …

• They known the direction to the goal

• They have local sensing (obstacles + encoders)

… and their world is reasonable!

• Finite obstacles in any finite range

• A line intersects an obstacle finite times

Switch between two basic behaviors

1. Head toward goal

2. Follow obstacles until you can head toward the goal again

10

Vector Field Histograms (VFH) [Borenstein et al. 1991]

Use a local map of the environment and evaluate the angle to drive towards

• Environment represented in a grid (2 DOF) with local measurements

• All openings for the robot to pass are found

B
o
re

n
st

ei
n

et
a
l.

11

Vector Field Histograms (VFH) [Borenstein et al. 1991]

Use a local map of the environment and evaluate the angle to drive towards

• Environment represented in a grid (2 DOF) with local measurements

• All openings for the robot to pass are found

• The one with lowest cost is selected

B
o
re

n
st

ei
n

et
a
l.

Probability of hitting an

obstacle, only directions below

threshold are evaluated!!

12

Vector Field Histograms (VFH) [Borenstein et al. 1991]

Use a local map of the environment and evaluate the angle to drive towards

• Environment represented in a grid (2 DOF) with local measurements

• All openings for the robot to pass are found

• The one with lowest cost is selected

B
o
re

n
st

ei
n

et
a
l.

Alignment of the robot

path with the goal

Difference between the

new direction and the

currrent wheel orientation

Difference between the

previously selected direction

and the new direction

13

Curvature Velocity Methods (CVM) [Simmons et al. 1996]

CVMs add physical constraints from the robot and the environment on (v, w)

• Assumption that robot is traveling on arcs (c= w / v) with acceleration constraints

• Obstacles are transformed in velocity space

• An objective function to select the optimal speed

Simmons et al.

14

Borenstein et al.

Vector Field Histogram+ (VFH+) [Borenstein et al. 1998]

VFH+ accounts also for vehicle kinematics

• Robot moving on arcs or straight lines

• Obstacles blocking a given direction blocks all

trajectories (arcs) like in an Ackerman vehicle

• Obstacles are enlarged so to account for all

kinematically blocked trajectories

However VFH+ as VFH suffers

• Limitation if narrow areas (e.g. doors) have to be passed

• Local minima might not be avoided

• Reaching of the goal can not be guaranteed

• Dynamics of the robot not really considered

15

Dynamic Window Approach (DWA) [Fox et al. 1997]

The kinematics of the robot are considered via local search in velocity space:

• Consider only circular trajectories via pairs Vs=(v,ω) of linear and angular speeds

• Va=(v, ω) is admissible, if the robot is able to stop before the closest obstacle

• A dynamic window restricts the reachable velocities Vd to those that can be reached

within a short time given limited robot accelerations

Vr =Vs Va Vd

DWA Search Space

F
o

x
et

 a
l.

16

How to choose (v,ω)?

Steering commands are chosen maximizing a heuristic navigation function:

• Minimize the travel time by “driving fast in the right direction”

• Planning restricted to Vr space [Fox, Burgard, Thrun ‘97]

• Global approach [Brock & Khatib 99] in <x,y>-space uses

Alignment with

target direction

Distance to closest obstacle

intersecting with curvature

Forward velocity of

the robot

G(v,) =(heading(v,)+ dist(v,)+ velocity(v,))

Forward robot velocity

Cost to reach the goal Goal nearness

Follows global path

Navigation

Function (NF)

17

DWA Algorithm (via trajectory rollout)

The basic idea of DWA … but with samples

1. Discretely sample robot control space

2. For each sampled velocity, perform

forward simulation to predict what would

happen if applied for some (short) time.

3. Evaluate (score) each trajectory

resulting from the forward simulation

4. Discard illegal trajectories, i.e.,

those that collide with obstacles, and

pick the highest-scoring trajectory

Can handle non circurar trajectories

Clothoid:

18

Sensors

A Simplified Sense-Plan-Act Architecture

Trajectory Planning

Lower Frequency

Trajectory

Trajectory Following

(and Obstacle Avoidance)

Motion Commands
Current

Position

Goal Position
Map

High Frequency

Local Planner

(control)

Global planner

19

Motion planning

Robot Motion Planning Goals

• Collision-free trajectories

• Robot should reach the goal location as fast as

possible (or maximizing an optimality criterion)

“…eminently necessary since, by definition,
a robot accomplishes tasks by moving in the real world.”

J.-C. Latombe (1991)

20

Problem statement

Find a collision free path between an initial pose and the goal, taking into account the

constraints (geometrical, physical, temporal)

• Path Planning: A PATH is a geometric

locus of way points, in a given space,

where the vehicle must pass

• Trajectory Generation: A TRAJECTORY

is a path for which a temporal law is

specified (e.g., acceleration and velocity

at each point)

• Maneuver Planning: a MANOUVER is a

series of actions or a scheme or plot that

the vehicle should execute

21

Motion planning definition

Given the following notation:

• A: single rigid object (the robot)

• W: Euclidean space where A moves

• B1, B2, ..., Bm fixed rigid objects distributed in W (obstacles)

Let assume

• The geometry of A and Bi is known

• The localization of the Bi in W is accurately known

• There are no kinematic constraints in the motion of A (A is a free-flying object)

Given an initial pose and a goal pose of A in W, generate a continuous
sequence of poses of A avoiding contact with the Bi,

starting at the initial pose and terminating at the goal pose.

22

Planning and Maps Representations

Different possible maps representations exist for path planning

• Paths (e.g., probabilistic road maps)

• Free space (e.g., Voronoi diagrams)

• Obstacles (e.g., geometric obstacles)

• Composite (e.g., grid maps)

23

What a Planner?

Search Based Planning Algorithms

• A*

• ARA*

• ANA*

• AD*

• D*

• …

Random Sampling

• PRMs

• RRT

• T-RRT

• SBL

• …

Search

Based

Planning

Library

Open

Motion

Planning

Library

24

Pros and Cons

Lets have a look at Search Based Methods (SBPL) first because of

• Their simplicity (at least in description)

• The generality of approaches

• Their theoretical guarantees

(if connectivity assumptions hold)

PROS CONS

Search Based Planning

• Finds the optimal solution
• Possible to assign costs
• Use of Heuristics
• Can state if a solution exists (complete)

• High computational cost

Random Sampling Planning • Fast in finding a feasible solution
• Hard to assign costs
• Only probably complete (cannot

be used to test for existance)

25

Planning on a Grid

Different possible maps representations exist for path planning

• Paths (e.g., probabilistic road maps)

• Free space (e.g., Voronoi diagrams)

• Obstacles (e.g., geometric obstacles)

• Composite (e.g., grid maps)

Kinematics approximation in grid maps

• 4-orthogonal
connectivity

• 4-diagonal
connectivity

• 8-connectivity

1

5

2 3

8

7 6

4

26

Graph (search) based planning basics

The overall idea:

• Generate a discretized representation of the planning problem

• Build a graph out of this discretized representation (e.g., through 4 neighbors
or 8 neighbors connectivity)

• Search the graph for the optimal solution

• Can interleave the construction of the representation with the search
(i.e., construct only what is necessary)

27

A real mobile robot should not be modeled as a point;

to take into account its shape obstacles are enlarged

This might generate some issues and a trade-off

is between memory requirements and performance

Robot shape

Robot

Expanded

Obstacle

28

Configuration Space (C-Space)

For an accurate collision detection the Configuration space is used

• A configuration of an object

is a point q = (q1, q2,…,qn)

• Point q is free if the robot

in q does not collide

• C-obstacle = union of all q

where the robot collides

• C-free = union of all free q

• Cspace = C-free + C-obstacle

Planning can be performed in C-Space
workspace configuration space

29

Mobile robot 2D C-Space

A robot can translate in the plane and/or rotate

Obstacles should be expanded according to the robot orientation

X

Y

C-space: 3D (x, y,)

x

Y

C-space: 2D (x, y)
X

Y

x

Y

Non holonomic
constraints can’t be
𝐶-Space obstacles

30

Exact and approximate planning

Different algorithms are available

• Returning the optimal path (e.g., Dijstra, A*, …)

• Returning an ε sub-optimal path

(e.g., weighted A*, ARA*, AD*, R*, D* Lite, ...)

Dijstra A* weighted A*

31

Searching graphs for least cost path

Given a graph search for the path that minimizes costs as much as possible

Many search algorithms compute optimal g-values for relevant states

• g(s)–an estimate of the cost of a least-cost path from sstart to s

• optimal values satisfy: g(s) = mins’’ in pred(s) g(s’’) + c(s’’,s)

32

Searching graphs for least cost path

Given a graph search for the path that minimizes costs as much as possible

Least-cost path is a greedy path computed by backtracking:

• start with sgoal and from any state s move to the predecessor

state s’ such that

s’ =argmin s’’ in pred(s) (g(s’’)+c(s’’,s))

33

A* speeds up search by computing g-values as

Heuristic function must be

• Admissible: for every state s, h(s) ≤ c*(s,sgoal)

• Consistent (satisfy triangle inequality):

o h(sgoal,sgoal) = 0

o for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

Admissibility follows from consistency and often viceversa

A* search algorithm

34

A* Search Algorithm

Main function

• g(sstart) = 0; all other g-values are infinite;

• OPEN = {sstart};

• ComputePath();

ComputePath function

• while(sgoal is not expanded)

o remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

o expand s;

For every expanded state g(s) is optimal

(if heuristics are consistent)

Set of candidates for expansion

35

A* Search Algorithm

Main function

• g(sstart) = 0; all other g-values are infinite;

• OPEN = {sstart};

• ComputePath();

ComputePath function

• while(sgoal is not expanded)

o remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

o insert s into CLOSED;

o for every successor s’of s such that s’ not in CLOSED

o if g(s’) > g(s) + c(s,s’)

o g(s’) = g(s) + c(s,s’);

o insert s’ into OPEN;

Set of states already expanded

Tries to decrease g(s’) using the

found path from sstart to s

Set of candidates for expansion

36

A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=

h=2

g=

h=1
g=

h=0
2

S4 S3
3

g=

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

37

A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart}

OPEN = {s2}

next state to expand: s2

S2 S1

Sgoal

2

g=1

h=2

g=

h=1
g=

h=0
2

S4 S3
3

g=

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

38

A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart, s2}

OPEN = {s1,s4}

next state to expand: s1

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1
g=

h=0
2

S4 S3
3

g= 2

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

39

A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart, s2, s1}

OPEN = {s4,sgoal}

next state to expand: s4

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1
g= 5

h=0
2

S4 S3
3

g= 2

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

40

A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart, s2, s1 , s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1
g= 5

h=0
2

S4 S3
3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

41

A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart, s2, s1 ,s4 , sgoal}

OPEN = {s3}

DONE!

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1
g= 5

h=0
2

S4 S3
3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

42

A* Properties

A* is guaranteed to

• Return an optimal path in terms of the solution

• Perform provably minimal number of state expansions

Algorithms state expansion:

• Dijkstra’s: expands states in the order of f = g values (roughly)

• A* Search: expands states in the order of f = g + h values

• Weighted A*:expands states in the order of f = g + ε h values,

ε> 1= bias towards states that are closer to goal

Weighted A* Search in many domains, it has been shown to be orders

of magnitude faster than A*

J
.
P

e
a
rl
.,

 “
H

e
u
ri
s
ti
c
s
:

In
te

lli
g
e
n
t

S
e
a
rc

h
 S

tr
a
te

g
ie

s
 f

o
r

C
o
m

p
u
te

r
P

ro
b
le

m
 S

o
lv

in
g
”,

 A
d
d
is

o
n
-W

e
s
le

y
,
1
9
8
4

43

A* Properties

Algorithms state expansion:

• Dijkstra’s: expands states in the order of f = g values (roughly)

sgoal

sstart

44

A* Properties

Algorithms state expansion:

• Dijkstra’s: expands states in the order of f = g values (roughly)

• A* Search: expands states in the order of f = g + h values

sgoal

sstart

45

A* Properties

Algorithms state expansion:

• Dijkstra’s: expands states in the order of f = g values (roughly)

• A* Search: expands states in the order of f = g + h values

• Weighted A*:expands states in the order of f = g + ε h values,

ε> 1= bias towards states that are closer to goal

sstart
sgoal

Shallow minima help in
finding solution fast.

46

Other variations of A*

ARA* (Anytime Repairing A*)

• Subsequent queries with decreasing suboptimality factor 𝜖

• Fast initial (suboptimal) solution

• Refinement over time

D*/D*-Light

• Re-use parts of the previous query

and only repair solution locally where

changes occured

Anytime D* (D* + ARA*)

• Anytime graph-search re-using previous query

A*: 25s ARA* (ϵ=2.5): 0.6s. ARA* (ϵ=1.0): 25s.

Likhachev, M. (2003). “ARA*: Anytime A* with provable bounds on sub-

optimality”, Advances in Neural Information Processing Systems

47

Planning problem ingredients

Typical components of a Search-based Planner

• Graph construction (given a state what are its successor states)

• Cost function (a cost associated with every transition in the graph)

• Heuristic function (estimates of cost-to-goal)

• Graph search algorithm (for example, A* search)

The graph can be built taking into account robot dynamics/kinematics constraints

Domain dependent

Domain independent

48

Graph can be constructed by using motion primitives

• Pros: sparse graph, feasible path, incorporate a variety of constraints

• Cons: possible incompleteness

Planning with graphs

49

Planning with graphs

Graph can be constructed by using motion primitives

• Pros: sparse graph, feasible path, incorporate a variety of constraints

• Cons: possible incompleteness

50

State-Lattice planning

Motion planning for constrained platforms as a graph search in state-space

• Discretize state-space into a

hypergrid (e.g. (𝑥, 𝑦, 𝜃, 𝜅))

• Compute neighborhood set by

connecting each tuple of states

with feasible motions

• Define cost-function/edge-weights

• Run any graph-search algorithm

to find lowest-cost path

P
iv

to
ra

ik
o

, M
.,

 &
 K

e
lly

,
A

.
(2

0
0

5
).

 C
o

n
s
tr

a
in

e
d

 M
o

ti
o

n
 P

la
n

n
in

g
 i
n

D
is

c
re

te
 S

ta
te

 S
p

a
c
e

s
. I

n
 F

ie
ld

 a
n

d
 S

e
rv

ic
e

 R
o

b
o

ti
c
s
 p

p
.
2

6
9

–
2

8
0

.

51

State-Lattice planning pros and cons

Design minimal neighborhood sets

• Avoid insertion of edges that can be

decomposed with the existing control

• Decomposition “close” in cost-space

P
iv

to
ra

ik
o

, M
.,

 &
 K

e
lly

,
A

.
(2

0
0

5
).

 C
o

n
s
tr

a
in

e
d

 M
o

ti
o

n
 P

la
n

n
in

g
 i
n

D
is

c
re

te
 S

ta
te

 S
p

a
c
e

s
. I

n
 F

ie
ld

 a
n

d
 S

e
rv

ic
e

 R
o

b
o

ti
c
s
 p

p
.
2

6
9

–
2

8
0

.

Pros Cons

Resolution complete “Curse of dimensionality”. Number of states grows exponentially
with dimensionality of state-space

Optimal State-lattice construction requires solving nontrivial two-state
boundary value problem

Offline computations due to regular
structure possible

Regular discretization might cause problems in narrow passages,
not aligned with the hypergrid

Discretization causes discontinuities in state variables not
considered in the hypergrid thus motion plans are not inherently
executable

60

Hybrid A*

Generate motion primitives by sampling control space

• No need to solve boundary value problem

• Resulting continuous states are associated

with a discrete state in the hypergrid

• Each grid-cell stores a continuous state

No completeness guarantee any more

• Changing reachable statespace

• Pruning of continuous-state branches

Produces inherently driveable paths and above mentioned shortcomings almost never

happen in practice

D
o

lg
o

v,
 D

.,
 e

t
a

l.
, “

P
a

th
 P

la
n

n
in

g
fo

r
A

u
to

n
o

m
o

u
s

V
e

h
ic

le
s

in
 U

n
k

n
o

w
n

 S
e

m
i-

st
ru

ct
u

re
d

 E
n

vi
ro

n
m

e
n

ts
”,

 T
h

e
 In

t.
 J

o
u

rn
a
l o

f
R

o
b

o
ti

c
s

R
e
se

a
rc

h
, 2

0
1

0

Conventional

Stale-Lattice
Hybrid A*

61

Sampling-Based Motion Planning

Other motivations for sampling:

• Computing an explicit representation of collision-free space is extremely time
consuming and impractical

• Conversely checking if a position is in free space is fast. There exist fast
collision-checking algorithms to test whether any given configuration
(or short path) is collision-free or not, in less than 0.001 sec

Basic idea :

• Sample the space of interest

• Connect sampled points by simple paths

• Check if the path is collision free

• Search the resulting graph

62

free space

[Kavraki, Svetska, Latombe,Overmars, 95]

Probabilistic Roadmap (PRM)

63

Probabilistic Roadmap (PRM)

free space

mb

mg

milestone

local path

64

PRM Algorithms

Build roadmap

• Pick uniformly at random s configurations in F and create M, the set of

milestones

• Construct the roadmap, i.e., a graph R=(M, L), where L is every pair of

milestones that see each other

• Call R the roadmap

65

PRM Algorithms

Query the graph

• for i={b, e} do

if there is a milestone m that sees qi then

mi <= m

else

i. repeat t times: pick a configuration q in F at random near
qi until q sees both qi and a milestone m

ii. if all t trials fail, return FAILURE, else mi<-m

• if mb and me are in the same connected component of the roadmap then return a
path connecting them else return NO PATH

66

PRM in Short

67

PRM in Short

68

PRM in Short

69

PRM in Short

70

PRM in Short

71

PRM in Short

72

Sampling based planners

Sample based methods incrementally construct a search tree by gradually

improving the resolution and without the need of the roadmap

• Incremental sampling and searching

approach without any parameter tuning

• In the limit the tree densely covers the space

• Dense sequence of samples is used

as a guide in the construction of the tree

Several version exists:

• Rapidly exploring dense tree (RDT)

• Rapidly exploring random tree (RRT – RRT*)

73

Rapidly exploring dense trees (RDT)

𝛼: Dnse sequence of samples in C

𝛼 𝑖 : ith sample of the sample sequence

G(𝑉, 𝐸): topological representation of RDT

𝑆 ⊂ 𝐶𝑓𝑟𝑒𝑒 : Set of points reached by G

𝑆 = 𝑒∈𝐸ڂ 𝑒(0,1) where 𝑒(0,1) ∈ 𝐶𝑓𝑟𝑒𝑒

L
a

V
a

ll
e

,
S

.
(1

9
9

8
).

 R
a

p
id

ly
-E

xp
lo

ri
n

g
 R

a
n

d
o
m

 T
re

e
s

A
 N

e
w

 T
o
o
l
fo

r
P

a
th

 P
la

n
n

in
g
.

74

Rapidly Exploring Dense Trees (RDTs)

L
a

V
a

ll
e

,
S

.
(1

9
9

8
).

 R
a

p
id

ly
-E

xp
lo

ri
n

g
 R

a
n

d
o
m

 T
re

e
s

A
 N

e
w

 T
o
o
l
fo

r
P

a
th

 P
la

n
n

in
g
.

75

L
a

V
a

ll
e

,
S

.
(1

9
9

8
).

 R
a

p
id

ly
-E

xp
lo

ri
n

g
 R

a
n

d
o
m

 T
re

e
s

A
 N

e
w

 T
o
o
l
fo

r
P

a
th

 P
la

n
n

in
g
.

Rapidly Exploring Dense Trees (RDTs)

Instead of using a new

sample of the dense

sequence to grow Ta, the

new vertex qs is used to

grow Tb towards Ta.

Two trees are connected

Two trees are swapped when one is larger

than the other (e.g., #vertices; #edges)

76

Rapidly Exploring Random Trees (RRT)

RRT improves on the basic RDT

• Steering the system toward random

samples according to kinodinamics

• Bias the tree towards unexplored

areas by using a Voronoy bias L
a

V
a

lle
,
S

.
M

.,
 K

u
ff

n
e

r,
 J

.,
 “

R
a

n
d

o
m

iz
e

d
 K

in
o

d
yn

a
m

ic
 P

la
n

n
in

g
”,

IE
E

E
 In

te
rn

a
ti

o
n

a
l C

o
n

fe
re

n
c
e
 o

n
 R

o
b

o
ti

c
s

a
n

d
 A

u
to

m
a
ti

o
, 1

9
9

9

77

RRT in Short

78

RRT in Short

79

RRT in Short

80

RRT in Short

81

RRT in Short

82

A few examples

Simple object

Complex Object

83

A few examples

More complex object

84

RRT pros and cons

RRT exploration quality is sensitive to distance metric and obtaining metrics and

obtaining distance metrics for non-holonomic systems is non-trivial

Pros Cons

Asymptotically complete No optimality guarantee (!)

Works reasonably well in high dimensional state-spaces Produces “jerky” paths in finite time

No two-state boundary value solver required Hardly any offline computations possible

Easy implementation

Easy to deal with constrained platforms

Not AsymptotIcally
Optimal !!!

85

RRT exstensions and RTT*

Few extensions have been proposed to the basic RRT algorithm

• Bidirectional RRT grows two trees from start and goal and

frequently tries to merge them

• Goal-biased RRT samples the goal state every n-th sample to

tradeoff exploration and exploitation

• RRT* Introduces local rewiring step to obtain asymptotic optimality…

Cannot rewire
existing nodes

S
.

K
a

ra
m

a
n

a
n

d
 E

. F
ra

zz
o

li
, “

In
c
re

m
e

n
ta

l s
a

m
p

li
n

g
-b

a
se

d
 a

lg
o

ri
th

m
s

fo
r

o
p

ti
m

a
l m

o
ti

o
n

 p
la

n
n

in
g
”,

 R
o
b

o
ti

cs
: S

ci
e

n
ce

 a
n

d
 S

ys
te

m
s,

 2
0

1
0

86

RRT exstensions and RTT*

Few extensions have been proposed to the basic RRT algorithm

• Bidirectional RRT grows two trees from start and goal and

frequently tries to merge them

• Goal-biased RRT samples the goal state every n-th sample to

tradeoff exploration and exploitation

• RRT* Introduces local rewiring step to obtain asymptotic optimality…

S
.

K
a

ra
m

a
n

a
n

d
 E

. F
ra

zz
o

li
, “

In
c
re

m
e

n
ta

l s
a

m
p

li
n

g
-b

a
se

d
 a

lg
o

ri
th

m
s

fo
r

o
p

ti
m

a
l m

o
ti

o
n

 p
la

n
n

in
g
”,

 R
o
b

o
ti

cs
: S

ci
e

n
ce

 a
n

d
 S

ys
te

m
s,

 2
0

1
0

87

RRT* pros and cons

Pros Cons

Asymptotically complete Two-state boundary value solver required for the
rewiring

Asymptotically optimal guarantee Produces “jerky” paths in finite time

Works reasonably well in high dimensional
state-spaces

Hardly any offline computations possible

No two-state boundary value solver required

Easy implementation

Easy to deal with constrained platforms

