
Cognitive Robotics – Introduction
Matteo Matteucci – matteo.matteucci@polimi.it

Matteo Matteucci – matteo.matteucci@polimi.it

About me and my lectures …

Lectures given by Matteo Matteucci

• +39 02 2399 3470

• matteo.matteucci@polimi.it

• http://www.deib.polimi.it/people/matteucci

Research Topics (several Thesis available)

• Robotics and Autonomous Systems

• Computer Vision and Perception

• Pattern Recognition & Machine Learning

• Benchmarking in Robotics

Aims of the lectures: learning how to design and implement the software

which makes autonomous an autonomous mobile robot (e.g., symbolic

planning, trajectory planning, localization, perception, mapping, etc.)

Matteo Matteucci – matteo.matteucci@polimi.it

Lectures Outline

Middleware in robotics

• Motivations and state of the art

• A case study: ROS

Symbolic Planning

• The PDDL language

• PDDL Extensions

Path planning

• Path planning in ROS

• SPBL vs OMPL

Localization and Mapping

• Localization vs Mapping

• Simultaneous Localization and Mapping

• 2D Navigation and localization in ROS

Object recognition

• 3D object recognition with RGBD cameras (kinect)

The NAO Case Study

3

Cognitive Robotics – Robotics Middlewares
Matteo Matteucci – matteo.matteucci@polimi.it

Matteo Matteucci – matteo.matteucci@polimi.it 5

Why a middlewares for robotics?

Issues in developing real robots

• Cooperation between hardware and software

• Architectural differences in robotics systems

• Software reusability and modularity

The Middleware idea

• Well-known in software engineering

• It provides a computational layer

• A bridge between the application

and the low-level details

• It is not a set of API and library

The origins

• 1968 introduced by d’Agapeyeff

• 80’s wrapper between legacy systems and new applications

• Nowadays: widespread in different domain fields (including Robotics)

Matteo Matteucci – matteo.matteucci@polimi.it

What is a Middleware?

Software that connects different software components or applications:

• Set of services that permits to several processes to interact

• Framework used to reduce the developing time in complex systems.

Middleware vs. Operating System

• The middleware stays between software

and different operating systems.

• The distinction between

operating system and middleware

is sometimes arbitrary.

• Some features of a middleware are now

integrated in operating systems (e.g., TCP/IP stack).

Some (non robotics) examples: Android, SOAP, Web Services, …

6

Operating
system

Middleware

Applications

Matteo Matteucci – matteo.matteucci@polimi.it

Why should we use a middleware?

Portability: provides a common programming model regardless the

programming language and the system architecture.

Reliability: middleware are tested independently. They permit to develop

robot controllers without considering the low level details and using

robust libraries.

Manage the complexity: low-level aspects are handled by libraries and

drivers inside the middleware. It (should) reduce(s) the programming

error and decrease the development time.

Matteo Matteucci – matteo.matteucci@polimi.it

1.Modelling

• Kinematic model

• Differential kinematics

• Dynamic model

2.Planning

• Motion laws

• Trajectory generation

3.Control

• Translate the movement into motor commands

• Several type of control: motion, force, etc.

Before the introduction of middleware

• Monolithic approach

• Little if any reuse of models or components

• Hard to maintain code and hard to integrate components

Some people believe the real issue with Robotics is integration!

A Classical Approach to Robot Development

Controller

Actuators

Robot

Sensors

Siciliano et al., 2011

Matteo Matteucci – matteo.matteucci@polimi.it

How Many Middleware Out There?

Several middleware have been developed in recent years:

• OROCOS [Europe]

• ORCA [Europe]

• YARP [Europe / Italy]

• BRICS [Europe]

• OpenRTM [Corea]

• OpenRave [US]

• ROS [US]

• …

Let’s see their common features and main differences …

9

Matteo Matteucci – matteo.matteucci@polimi.it

OROCOS: Open Robot Control Software

The project started in December 2000 from an initiative of the mailing list

EURON then it become and European project with 3 partners:

• K.U. Leuven (Belgium),

• LAAS Toulouse (France),

• KTH Stockholm (Sweden)

OROCOS requirements:

• Open source license

• Modularity and flexibility

• Not related to robot industries

• Working with any kind of device

• Software components for kinematics,

dynamics, planning, sensors, controller

• Not related to a unique programming language

Matteo Matteucci – matteo.matteucci@polimi.it

OROCOS Structure (C++ Libraries)

OROCOS Real-Time Toolkit (RTT)

 infrastructure and functionalities
for real-time robot systems

 component-based applications

OROCOS Component Library (OCL)

 provides ready-to-use components,
e.g., device drivers, debugging tools,
path planners, task planners

OROCOS Bayesian Filtering Library (BFL)

 application independent framework,
e.g., (Extended) Kalman Filter,
Particle Filter

OROCOS Kinematics & Dynamics Library (KDL)

 real-time kinematics & dynamics computations

Matteo Matteucci – matteo.matteucci@polimi.it

OROCOS RTT Framework

Matteo Matteucci – matteo.matteucci@polimi.it

OROCOS Components

13

Matteo Matteucci – matteo.matteucci@polimi.it

ORCA: Components for Robotics

The aim of the project is to focus on software reuse

for scientific and industrial applications

Key properties:

 commonly-use interfaces

 high-level libraries

 updated software repositories

ORCA defines itself as “unconstrained component-based system”

Matteo Matteucci – matteo.matteucci@polimi.it

ORCA and ICE

The main difference between OROCOS and ORCA is the communication

toolkit; OROCOS uses CORBA while ORCA uses ICE

• ICE is a modern framework developed by ZeroC.

• ICE is an open-source commercial

communication system.

• ICE provides two core services

• IceGrid registry (Naming service): which provides

the logic mapping between different components.

• IceStorm service (Event service): which constitute

the publisher and subscriber architecture.

“A component can find the other components through the IceGrid registry

and can communicate with them through the IceStorm service.”

Matteo Matteucci – matteo.matteucci@polimi.it

ORCA Libraries Evolution

16

Matteo Matteucci – matteo.matteucci@polimi.it

OpenRTM-aist

RT-Middleware (RTM) is a software platform to construct the robot system by

combining the software modules of the robot functional elements (RTC):

• Camera component

• Stereovision component

• Face recognition component

• Microphone component

• Speech recognition component

• Conversational component

• Head and arm component

• Speech synthesis component

• …

OpenRTM-aist (Advanced Industrial Science & Technology) is based on the

CORBA technology to implement RTC extended specification

17

Matteo Matteucci – matteo.matteucci@polimi.it

OpenRTM-aist Overview

RT-Middleware consists of:

• RT-Component framework

• RT-Middleware

• Basic RT-Component Group

• Libraries

• Basic Service Group

• Basic tool Group

18

Matteo Matteucci – matteo.matteucci@polimi.it

OpenRave: Open Robotics Automation Virtual Environment

Proposed by Rosen Diankov provides an

environment for testing, developing, and

deploying motion planning algorithms in

real-world robotics applications.

Matteo Matteucci – matteo.matteucci@polimi.it

BRICS: Best Practices in Robotics

European project (2009) aimed at find out the "best practices" in the

developing of the robotic systems:

• Investigate the weakness of

robotic projects

• Investigates the integration between

hardware & software

• Design an Integrated Development

Environment for robotic projects (BRIDE)

• Define showcases for the evaluation of

project robustness with respect to

BRICS principles.

“The prime objective of BRICS is to structure and formalize the robot

development process itself and to provide tools, models, and functional

libraries, which help accelerating this process significantly.”

Matteo Matteucci – matteo.matteucci@polimi.it

ROS: Robot Operating System

Presented in 2009 by Willow Garage is a meta-operating system for robotics

with a rich ecosystem of tools and programs

21

Matteo Matteucci – matteo.matteucci@polimi.it

Final (?) Remarks

Middleware in Robotics :

• Are widely used

• Component-based

• Based on asynchronous communication

• Implement Publisher-Subscriber architectures

• Support different robot architectures by default

(PR2, NAO, AIBO, ROOMBA, iCUB, etc..)

• …

• They are way too many !!!!

In the course we will use ROS as reference middleware because:

• Easy to learn, install, and deploy

• Lots of components already available

• Middleware used (currently) on AIRLab robots

 22

Cognitive Robotics – Robotics Middlewares
Matteo Matteucci – matteo.matteucci@polimi.it

